

UNIVERSITI PUTRA MALAYSIA

NEW METHOD FOR REDUCTION OF HARMONIC OF THREE PHASE RECTIFIER USING HARMONIC INJECTION METHOD

ALI SAADON MTAIR

FK 2011 150

NEW METHOD FOR REDUCTION OF HARMONIC OF THREE PHASE RECTIFIER USING HARMONIC INJECTION METHOD

By

ALI SAADON MTAIR

Thesis submitted to the School of Graduate Studies, Universiti Putra Malaysia in Fulfillment of the Requirements for the Degree of Master of Science

October 2011

Dedication

TO MY BELOVED PARENTS, MY BROTHERS AND MY SISTERS

Abstract of thesis presented to the Senate of Universit Putra Malaysia in fulfillment of the requirements for the degree of Master of Science

NEW METHOD FOR REDUCTION OF HARMONIC OF THREE PHASE RECTIFIER USING HARMONIC INJECTION METHOD

By

ALI SAADON MTAIR

October 2011

Chairman: Professor Madya Norhisam b. Misron

Faculty: Engineering

The three-phase rectifier is becoming more common in power systems. This rectifier produces a non-linear waveform of the input current into a power system. This causes a number of problems for the power system control and for other electrical systems which require such rectifiers. In fact, the harmonic components generated by such power electronic devices have severe effects on several aspects of power networks especially on distribution. In addition, the high value of Total Harmonic Distortion (THD) causes undesirable distortion on the sinusoidal shape of the wave for the input current.

This thesis proposes a new circuit for three-phase rectifier using harmonic current injection method. The proposed circuit was simulated using MATLAB software. A prototype of the proposed circuit has been developed. The proposed circuit uses active harmonic current injection method with a capacitor bank, which is simple compared to conventional circuits using harmonic current injection method with star-delta transformer as the current injection device.

The prototype has been examined with feedback injection harmonic current to show the validity of the system. The comparison between simulation results and experimental results from the prototype shows minor difference. It has been observed that conventional three-phase rectifiers produce high THD for input currents, i.e., around 7.5%, while the proposed circuit has reduced the THD drawn from the input current supply down to 5.5%. This makes the waveform of the input current close to sinusoidal wave.

Abstrak thesis yang dikemukakan Senate Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

KAEDAH BARU UNTUK MENGURANGKAN HARMONIK PENERUS TIGA FASA MENGGUNAKAN KAEDAH SUNTIKAN HARMONIK

Pengerusi : Profesor Madya Norhisam b. Misron

Fakulti: Kejuruteraan

Penerus tiga fasa menjadi perkara biasa dalam sistem kuasa. Ianya menghasilkan gelombang arus yang tidak terurus ke dalam sistem kuasa. Ini menyebabkan pelbagai masalah pada sistem kuasa dan sistem elektrik yang lain di mana penerus diperlukan. Tambahan pula, komponen harmonik dihasilkan oleh peralatan electronik kuasa mempunyai kesan buruk terhadap beberapa aspek jaringan kuasa terutamanya dalam pengagihan. Tambahan pula, ketinggian jumlah ganguan harmonik (THD) menyebabkon ganguan yang tidak diingini terhadap bentuk sinosiodal arus gelompang masukan.

Tesis ini mencadangkan litar baru untuk penerus tiga fasa menggunakan cara cucukkan arus harmonik. Litar yang dicadangkan telah disimulasi dengan mengunakan MATLAB. Prototaip litar cadangan telah dibangunkan. Litar cadangan menggunakan cucukan arus harmonik yang akfif dengan bank kapasitor di mana ianya lebih ringkas berbanding dengan liltar sedia ada menggunakan cara cucukan arus harmonik dengan pengubah segitiga-bintang sebagai peralatan arus cucukan.

Prototaip telah diperiksa dengan maklum balas arus cucukan harmonik menunjukkan pergesahan terhadap sistem. Perbandingan antara keputusan simulasi dan keputusan amali menunjukkan perbezaan minor. Pemerhatian terhadap penerus konvensional penukar arus terus tiga fasa menghasilkan THD yang tinggi untuk arus terus, sebagai contoh 7.5%, sementara litar yang dicadangkan telah menurunkan THD arus masukan bekalan kepada 5.5%. Ini menjadikan bentuk gelombang arus masukan hamper kepada sinusoidal.

ACKNOWLEDGEMENTS

I would like to express my most sincere thanks and appreciation to my supervisor Associate Prof. Dr. M. Norhisam, for his continued support and encouragement during the course of his work. His valuable expertise, advice and encouragement made this work possible. I would like to express my deepest thanks and admiration to Prof. Dr. I. Aris for his valuable discussion and comments on this work.

I also would like to express my great thanks and gratitude to my best friends Mr. Arsah Toudeshki, Mr. Raja Nor Firdus, Mr. Suhairi Rizuan, Mr. Mohammad Rezazadeh Mehrjou, Mrs. Siti Khodijah, Mr. Sani Mohammed Lawal and Mr. Mohammad Reza Zare for their support since the beginning of my study in UPM.

I am grateful to the members of the Electrical and Electronic Engineering Department Universiti Putra Malaysia for their assistance. I would like to express special thanks to Associate Prof. Dr. Senan Mahmud Abdullah for being the former supervisory of this project. I certify that an Examination Committee met on ______ to conduct the final examination of Ali Saadon Mtair AL-Ogaili on his Master of Science thesis entitled" Improvement of Current Harmonic in Three-Phase Bridge Rectifier Using Harmonic Current Injection Method" in accordance with Universiti Putra Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulation 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are follows:

Examiner 1

(Chairman)

Examiner 2 (Internal Examiner)

Examiner 3

(Internal Examiner)

Examiner 4 (External Examiner)

Bujang Kim Huat, PhD

Professor/ Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date:

This thesis was submitted to senate of Universiti Putra Malaysia and has been accepted as fulfillment of requirements for degree of Master of Science. Members of the Supervisory Committee were follows:

Norhisam Misron, PhD Eng. Faculty of Engineering Universiti Putra Malaysia (Chairman)

Ishak b. Aris, PhD Proessor Faculty of Engineering Universiti Putra Malaysia (Member)

BUJANG KIM HUAT, PhD

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date:

DECLARATION

I declare that the thesis is my original work except for quotations and citations, which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

TABLE OF CONTENTS

				Page		
ABS	TRACT			iii		
ABS	TRAK			v		
ACK	ACKNOWLEDGEMENTS					
DEC	DECLARATION LIST OF TABLES					
LIST						
	L OF FIGU	JRES DEVIATIONS		X1		
LIST	I OF ABB	REVIATIONS		XX1		
СНА	PTER					
1	INTR	ODUCTION		1		
	1.1	General Ov	erview about Current Injection Methods	6		
	1.2	Problem Sta	atement	8		
	1.3	Objectives	of the Research	9		
	1.4	Research Se	cope	9		
	1.5	Thesis Outl	ine	10		
2	LITE	RAT <mark>URE REV</mark>	TEW	11		
	2.1	Overview a	bout Rectifier and Injection Method	11		
	2.2	Basic Powe	er convertor	11		
		2.2.1	Rectifier (AC-DC Convertor)	12		
	2.3	Harmonics		13		
		2.3.1	Harmonic Distortion	13		
		2.3.2	Total Harmonic Distortion	14		
	2.4	Convention	al Diode Bridge Rectifier	14		
	2.5	Filters		17		
		2.5.1	Passive Filters	18		
		2.5.2	Active Filters	18		
		2.5.3	Wave Shaping of the Interface Current	19		
		2.5.4	Magnetic Approaches	19		
		2.5.5	Switch-Mode Active Approach	20		
	2.6	Some of the Rectifier	e Circuit's Topology for Three-Phase Bridge	21		
		2.6.1	Three-Phase Rectifier with Passive Filter	22		
		2.6.2	Three-Phase AC-DC Converter Topologies Using Single-Phase Convertor	23		
		2.6.3	Three-phase Multi Switch Rectifier	25		
		2.6.4	Three-Phase Single-Switch Converters	27		
				<i></i>		

2.7	Three-phase	se Switching Mode Based on Switch-Clamped			
2.8	Background on the Harmonic Current Injection Method Three-Phase Rectifier Applying Active Current Injection				
2.9					
,	2.9.1	Three-Phase Rectifier with an Active Current Injection and a Single High-Frequency Inductor	33		
	2.9.2	Harmonic Reduction Using Injection Based Twelve-Pulse Rectifier	35		
	2.9.3	A Novel Three-phase PFC Rectifier Using a Harmonic Current Injection Method	35		
	2.9.4	12-Pulse Auto-Transformer Rectifier with Harmonic Current Injection for non-Grid- Connected Wind Power Applications	36		
2.10	Present Cur	rent Injection Schemes: a Critical Evaluation	37		
2.11	Summary		40		
метно	DOLOGY		41		
3.1	Three-Phase	e Bridge Rectifier	41		
3.2	The Circuit	Topology	42		
3.3	Harmonic M	Ieasurement of the Fifth and the Seventh Order	45		
3.4	ection	45			
	3.4.1	Principles of the Current Injection Method	47		
	3.4.2	The control Strategy	48		
	3.4.3	Analysis for Three Phase Bridge Rectifier with Current Injection Network and Current	49		
		Injection Device			
3.5	Choosing of	f the Parameters	52		
	3.51	Source	52		
	3.5.2	The Output Filter	43		
	3.5.3	Capacitors	54		
	3.5.4	Diodes	55		
	3.5.5	IGBTS	55		
	3.5.6	Load	55		
	3.5.7	Switching Control Pulse	55		
3.6	Design of C	urrent Injection Network	57		
3.7	Dual Circuit	cuit			
3.8	PIC	PIC			
3.9	The Contribution of Synchronization Circuit				
3.10	Simulation	Circuit	63		
3.11	Summary		66		
RESULT	FS AND DIS	CUSSION			
11	Simulation	Populta and Discussion	60		

3

6

4

4.1	Simulation Results and Discussion	09
4.2	Experimental Results and Discussion	89

	4.3	Benchmark	105
	4.3	Summary	107
5	CONC	CLUSION AND FUTURE WORK	109
	5.1	Conclusion	109
	5.2	Future Work	111
			112
REF	ERENCE ENDIX	S	
BIO	DATA OI	F STUDENT	

LIST OF PUBLICATIONS

C

