

UNIVERSITI PUTRA MALAYSIA

CHARACTERIZATION AND DISPERSION BEHAVIOR OF TITANIUM DIOXIDE AS PHOTOCATALYTIC NANOPARTICLES USING METAL ORGANIC CHEMICAL VAPOUR DEPOSITION SYSTEM

SITI HAJAR BINTI OTHMAN

FK 2011 147

CHARACTERIZATION AND DISPERSION BEHAVIOR OF TITANIUM DIOXIDE AS PHOTOCATALYTIC NANOPARTICLES USING METAL ORGANIC CHEMICAL VAPOUR DEPOSITION SYSTEM

SITI HAJAR BINTI OTHMAN

DOCTOR OF PHILOSOPHY UNIVERSITI PUTRA MALAYSIA

2011

CHARACTERIZATION AND DISPERSION BEHAVIOR OF TITANIUM DIOXIDE AS PHOTOCATALYTIC NANOPARTICLES USING METAL ORGANIC CHEMICAL VAPOUR DEPOSITION SYSTEM

By

SITI HAJAR BINTI OTHMAN

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor Philosophy

December 2011

To my beloved parents for their great sacrifice..

UPM

To my dear husband and son for completing my life..

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor Philosophy

CHARACTERIZATION AND DISPERSION BEHAVIOR OF TITANIUM DIOXIDE AS PHOTOCATALYTIC NANOPARTICLES USING METAL ORGANIC CHEMICAL VAPOUR DEPOSITION SYSTEM

By

SITI HAJAR BINTI OTHMAN

December 2011

Chair: Suraya Abdul Rashid, PhD

Faculty: Faculty of Engineering

Metal organic chemical vapour deposition (MOCVD) is a favourable technique to synthesize nanoparticles owing to the relative ease and simplicity of the process. In the MOCVD system, the presence of heat decomposes gaseous reactants to form a stable solid product. The motivation of the present work was to study the synthesis, doping, characterization, dispersion, and photocatalytic properties of TiO₂ nanoparticles synthesized via MOCVD. Computational fluid dynamics (CFD) simulation was utilized to provide better understanding on the MOCVD synthesis system as well as fluid dynamics inside the reactor.

It was found that deposition temperature plays an important role in determining the properties of the synthesized TiO_2 nanoparticles such as particle size and crystallinity. Crystallinity was determined to have significant influence on photocatalytic activity compared to particle size. The nanoparticles heat treated at temperatures higher than or equal to the deposition temperature had improved photocatalytic activity. Thus, it was deduced that the choice of heat treatment

temperature should be made in view of the deposition temperature. Fe doping was found to promote the phase transition, slightly decrease the particle size, and enhance the absorption of TiO_2 nanoparticles in the visible spectrum. However, the photocatalytic activity decreased due to the unfavourable location of Fe ion inside the interior matrix of the TiO_2 nanoparticles rather than on the exterior surface.

For the dispersion study, rupture followed by erosion was determined to be the main break up mechanisms when ultrasonication was employed. 3 weight% of polyacrylic acid with average molecular weight of 2000 g/mol was determined to produce the best dispersion and most stable suspension. The coatings were confirmed to be photocatalytically active.

Finally, the CFD simulation results indicate that increasing deposition temperature and reducing carrier gas flowrate increases the surface deposition rate and the amount of TiO_2 nanoparticles produced. Temperature plays remarkable part in determining the rate of surface deposition of TiO_2 nanoparticles compared to carrier gas flowrate. Flow recirculations were found to occur in the reactor due to protrusion and large temperature gradient. Good mixing of N_2 and O_2 gases is important to ensure the deposition uniformity. Good agreement between experimental and simulation results lends support to the reliability of the simulations work.

In conclusion, this work opens the window towards improving and optimizing the synthesis process of nanoparticles via MOCVD method as well as offers knowledge on the dispersion and stabilization of nanoparticles towards advancement for industrial applications.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

PENCIRIAN DAN SIFAT PENYERAKAN TITANIUM DIOKSIDA SEBAGAI NANOPARTIKEL FOTOKATALITIK MENGGUNAKAN SISTEM PENGENAPAN WAP KIMIA LOGAM ORGANIK

Oleh

SITI HAJAR BINTI OTHMAN

Disember 2011

Pengerusi: Suraya Abdul Rashid, PhD

Fakulti: Fakulti Kejuruteraan

Pengenapan wap kimia logam organik (MOCVD) adalah teknik yang digemari untuk mensintesis nanopartikel relatif dengan kemudahan dan kesederhanaan proses tersebut. Dalam proses MOCVD, kehadiran haba menguraikan gas bahan tindak balas untuk membentuk produk pepejal yang stabil. Motivasi kerja ini adalah untuk mengkaji sintesis, pengedopan, pencirian, penyebaran, dan sifat-sifat fotokatalitik nanopartikel TiO₂ yang disintesis menggunakan MOCVD. Simulasi pengiraan dinamik bendalir (CFD) digunakan untuk memberikan pemahaman yang lebih baik mengenai sistem sintesis MOCVD serta dinamik bendalir di dalam reaktor.

Suhu pengenapan didapati memainkan peranan penting dalam menentukan sifat-sifat nanopartikel TiO₂ yang disintesis seperti saiz partikel dan kristaliniti. Kristaliniti didapati mempunyai pengaruh yang besar ke atas aktiviti fotokatalitik berbanding saiz partikel. Terdapat peningkatan dalam aktiviti fotokatalitik nanopartikel yang dirawat pada suhu yang lebih tinggi daripada atau sama dengan suhu pengenapan. Kesimpulannya, pemilihan suhu rawatan haba perlu dibuat berpandukan suhu pengenapan. Pengedopan Fe didapati menggalakkan peralihan fasa, mengurangkan sedikit saiz partikel, dan meningkatkan penyerapan nanopartikel TiO₂ ke spektrum boleh lihat. Walau bagaimanapun, aktiviti fotokatalitik berkurangan kerana lokasi ion Fe yang tidak diingini iaitu di dalam matriks dalaman nanopartikel TiO₂ dan bukannya pada permukaan luaran.

Untuk kajian penyerakan, didapati bahawa pemecahan diikuti oleh hakisan adalah mekanisme utama penggunaan ultrasonik. 3% berat asid poliakrilik dengan purata berat molekular 2000 g/mol didapati dapat menghasilkan penyerakan yang terbaik dan ampaian yang paling stabil. Saduran telah disahkan aktif fotokatalitik.

Akhir sekali, keputusan simulasi CFD menunjukkan bahawa kadar permukaan pengenapan dan jumlah nanopartikel TiO₂ yang dihasilkan meningkat dengan peningkatan suhu pengenapan dan pengurangan kadar aliran gas pembawa. Suhu memainkan peranan yang penting dalam menentukan kadar permukaan pengenapan nanopartikel TiO₂ berbanding kadar aliran gas pembawa. Aliran edaran semula didapati berlaku di dalam reaktor kerana jorokan dan perbezaan suhu yang besar. Percampuran yang baik antara gas N₂ dan O₂ adalah penting untuk memastikan keseragaman pengenapan. Persamaan yang baik antara keputusan ujikaji dan simulasi menyokong kredibiliti kerja simulasi.

Kesimpulannya, kerja ini membuka peluang ke arah memperbaiki dan mengoptimumkan proses sintesis nanopartikel menerusi kaedah MOCVD serta menawarkan pengetahuan mengenai penyerakan dan kestabilan nanopartikel ke arah kemajuan untuk aplikasi perindustrian.

ACKNOWLEDGEMENTS

I would like to extend my deepest gratitude and appreciation to my supervisor Assoc. Prof. Dr. Suraya Abdul Rashid for her excellence supervision, continuous support, invaluable advice, encouragement, motivation, and patience. Her guidance has helped me throughout my research and writing up of this thesis. My special thanks and appreciation also goes to the rest of my supervisory committee members, Dr. Tinia Idaty Mohd Ghazi and Assoc. Prof. Dr. Norhafizah Abdullah for their constructive suggestions, insightful comments, helps, and encouragement. Without my supervisory committee, this research work would not have been possible.

My sincere thanks also goes to all my friends and colleagues especially Zi Kang, David, Kak Azian, Kak Sharifah, Kak Ferra, Kak Zila, Kak Shanti, Mai, Pak Darmadi, Pak Azhari, Pak Muhammad, Chong, and others for their helps, constant support, encouragement, joy, and laughter. Deep thanks to the staff members of Department of Chemical and Environmental Engineering Laboratories, Institute of Bioscience Laboratories, and Institute of Advanced Technology Laboratories for their continuous assistance and technical expertise. I am also grateful to the Universiti Putra Malaysia for giving me the opportunity to pursue my PhD study and for providing financial support under the Fundamental Research Grant Scheme (Vote No.: 5523426 and 5523767). Big thanks to Higher Minister Education of Malaysia for offering me the scholarship in pursuing my PhD study. Also, sincere thanks to Mr. Zamir Abdul Rashid for his precious advices, expertise, and helps on simulations work. My heartfelt and sincere appreciation also goes to my family; Mak, Abah, Kakak, Lin, Min, parents in law, sisters in law, brothers in law, niece, nephews, and relatives for their love, support, patience, and prayers for me to reach this stage. Not to forget, Al-Fatihah for Allahyarhamah Sharifah Alawiyah Binti Syed Mahmood, my muchloved Emak. She will be remembered dearly. Last but not least, my undivided love and warmest gratitude goes to my loving, caring, understanding, and wonderful husband, Mohammad Hilmi Bin Kassim for his patience, comforting support, encouragement, and prayers throughout my study. To my dear son, Hafiy Imaan, thank you for being such a good baby throughout my thesis writing journey. His presence has made my thesis writing journey more pleasurable. I certify that a Thesis Examination Committee has met on 2 December 2011 to conduct the final examination of Siti Hajar binti Othman on her thesis entitled "Characterization and Dispersion Behavior of Titanium Dioxide as Photocatalytic Nanoparticles Using Metal Organic Chemical Vapour Deposition System" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Luqman Chuah Abdullah, PhD

Professor Faculty of Engineering Universiti Putra Malaysia (Chairman)

Zulkarnain bin Zainal, PhD

Professor Faculty of Science Universiti Putra Malaysia (Internal Examiner)

Dayang Radiah binti Awang Biak, PhD

Senior Lecturer Faculty of Engineering Universiti Putra Malaysia (Internal Examiner)

Ng Ka Ming, PhD

Professor The Hong Kong University of Science and Technology China (External Examiner)

BUJANG KIM HUAT, PhD

Professor and Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date:

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of **Doctor of Philosophy**. The members of the Supervisory Committee were as follows:

Suraya Abdul Rashid, PhD

Associate Professor Faculty of Engineering Universiti Putra Malaysia (Chairman)

Norhafizah Abdullah, PhD

Associate Professor Faculty of Engineering Universiti Putra Malaysia (Member)

Tinia Idaty Mohd Ghazi, PhD Senior Lecturer

Faculty of Engineering Universiti Putra Malaysia (Member)

BUJANG BIN KIM HUAT, PhD

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date:

DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

LIST OF TABLES

Table		Page
2.1	Detail properties of Degussa P25 (Source: Evonik Industries)	23
2.2	Brief literature review on the synthesis, characterization, and photocatalytic properties of TiO_2 nanoparticles	33
2.3	Relationship between zeta potential value and stability behaviour of the dispersion (Source: Shimadzu UV-1650 PC Spectrophotometer User Guide)	59
3.1	Molecular structure, molecular formula, molecular weight, and boiling point of both the TBOT and TTIP precursors (Source: Sigma-Aldrich)	90
3.2	Reactions considered in the model along with the activation energy and pre-exponential factors values of TTIP	91
4.1	The rate constant values of TiO_2 nanoparticle samples with and without heat treatment and the mean nanoparticle diameter determined from SEM, TEM, and XRD	103
4.2	The surface area, mean nanoparticle diameter, and rate constant values of TiO_2 nanoparticle samples deposited at different temperatures and different carrier gas flowrates including the commercial Degussa P25	128
4.3	Effect of amount of Fe dopant on the surface area, mean nanoparticle diameter, percentage of anatase and rutile crystal structure, bandgap energy, and rate constant values of TiO_2 nanoparticle samples deposited at 700°C including the commercial Degussa P25	148

LIST OF FIGURES

Figure		Page
2.1	Simplified Reaction Scheme of the Photocatalytic Reaction of TiO ₂ Nanoparticles	15
	(Source: Adapted from Benedix et al., 2000)	
2.2	Diagram of the Anatase and Rutile Crystal Structure (Source: Farrell, 2001)	19
2.3	Production Process of the Main Commercial TiO ₂ Nanoparticles, Degussa P25 (Source: Evonik Industries)	24
2.4	Simplified Reaction Scheme of the Photocatalytic Reaction of Fe-doped TiO ₂ Under UV and Visible Light (Source: Adapted from Tong et al., 2008)	29
2.5	Crystal Structure of Fe-doped TiO_2 with a Ti Atom Displaced by a Fe Impurity Atom (Source: Zhang et al., 2006)	31
2.6	MOCVD Reactor Setup (MFC - Mass Flow Controller) (Source: Backman et al., 2005)	37
2.7	A Schematic Illustration of the Key CVD Steps During Deposition (Source: Choy, 2003)	41
2.8	Schematic of Deposition Process (Source: Adapted from Backman et al., 2005)	45
2.9	Schematic Illustration of Particle Generation Process by Gas- Phase Reaction (Source: Nakaso et al., 2001)	46
2.10	Schematic Presentation of Break Up Mechanism (Source: Padron et al., 2008)	52
2.11	Particle Size Distributions for Different Break Up Modes (Source: Özcan-Taşkin et al., 2009)	55
2.12	Electrical Double Layer Surround a Negatively Charged Particle (Adapted from: Stanford Microfluidics Laboratory)	57

2.13	The Relationship Between Zeta Potential and Surface Potential (Source: Zeta-Meter)	58
2.14	Dispersant Attachments on Particle in Aqueous Suspension (Source: Vernardakis, 2007)	60
2.15	Dissociation of Polyacrylic Acid in Aqueous Solution	61
2.16	Illustration of Dispersion Mechanism of TiO_2 Particles in PAA Aqueous Suspension (Source: Ran et al., 2007)	62
3.1	Summary of Methodology	74
3.2	Experimental Setup of MOCVD Reactor	75
3.3	Experimental Setup of Photocatalytic Reactor	81
3.4	Summary of Methodology for Photocatalytic Activity of Coatings Study	88
3.5	Geometry of the Simplified MOCVD Reactor and its Schematic Representation. All the Measurements are in Metre (m)	89
4.1	SEM Micrographs (Left) and Corresponding Particle Size Distribution Histograms (Right) of TiO ₂ Nanoparticle Samples Deposited at (a) 400°C, (b) 500°C, (c) 600°C, and (d) 700°C without Postdeposition Heat Treatment	100
4.2	XRD Patterns of TiO ₂ Nanoparticle Samples Deposited at Various Deposition Temperatures without Postdeposition Heat Treatment	101
4.3	TGA Curve of TiO ₂ Nanoparticle Sample Deposited at 700°C without Postdeposition Heat Treatment and the Presence of O_2 Feed	106
4.4	TEM Micrographs (Left) and Corresponding Particle Size Distribution Histograms (Right) of TiO ₂ Nanoparticle Samples Deposited at (a) 700°C, (b) 700°C Heat Treated at 400°C, and (c) 700°C Heat Treated at 700°C	108
4.5	XRD Patterns of TiO ₂ Nanoparticle Samples Deposited at Different Deposition Temperatures with and without Heat Treatment - (a) 300°C (b) 400°C (c) 500°C (d) 600°C (e) 700°C, and (f) XRD Patterns for All Samples Deposited at Different Temperatures, Heat Treated at 400°C	110

4.6	Photocataytic Activity of TiO ₂ Nanoparticle Samples Deposited at Different Deposition Temperatures with and without Heat Treatment - (a) 300°C (b) 400°C (c) 500°C (d) 600°C (e) 700°C, and (f) Photocatalytic Activity of Samples Deposited at Different Deposition Temperatures and Heat Treated at 400°C. Graphs Fitted with Linear Trendline from Which the Rate Constants Were Determined. TiO ₂ Loading: 0.02 g, Concentration of Methylene Blue: 6 ppm	114
4.7.	TGA Curve of TiO ₂ Nanoparticle Sample Deposited at 700°C with the Presence of O ₂ Feed	120
4.8	Spectras of (a) EDX and (b) XPS of TiO_2 Nanoparticle Sample	121
4.9	TEM Micrographs (Left) and Corresponding Particle Size Distribution Histograms (Right) of TiO ₂ Nanoparticle Samples Deposited at (a) 400°C, (b) 500°C, (c) 600°C, (d) 700°C, (e) 800°C, and (f) 900°C	124
4.10	XRD Patterns of TiO ₂ Nanoparticle Samples Deposited at Different Temperatures - (a) 400°C, (b) 500°C, (c) 600°C, (d) 700°C, (e) 800°C, and (f) 900°C	130
4.11	Photocatalytic Activity of TiO ₂ Nanoparticle Samples Deposited at Different Deposition Temperatures - (a) 400°C (b) 500°C (c) 600°C (d) 700°C (e) 800°C, and (f) 900°C. Graph Fitted with Linear Trendline from Which the Rate Constants Were Determined. TiO ₂ Loading: 0.02 g, Concentration of Methylene Blue: 6 ppm	133
4.12	TEM Micrographs (Left) and Corresponding Particle Size Distribution Histograms (Right) of TiO ₂ Nanoparticle Samples Deposited at 700°C with Carrier Gas Flowrate of (a) 200 mL/min, (b) 400 mL/min, and (c) 600 mL/min	136
4.13	XRD Patterns of TiO ₂ Nanoparticle Samples Deposited at 700°C with Different Carrier Gas Flowrates - (a) 200 mL/min, (b) 400 mL/min, and (c) 600 mL/min	138
4.14	Photocatalytic Activity of TiO ₂ Nanoparticle Samples Deposited at 700°C with Different Carrier Gas Flowrates - (a) 200 mL/min (b) 400 mL/min, and (c) 600 mL/min. Graph Fitted with Linear Trendline from Which the Rate Constants Were Determined. TiO ₂ Loading: 0.02 g, Concentration of Methylene Blue: 6 ppm	140

4.15	TEM Micrograph (Left) and Corresponding Particle Size Distribution Histogram (Right) of TiO ₂ Nanoparticle Samples Deposited at 700°C with Carrier Gas Flowrate of 400 mL/min Using TTIP Precursor	142
4.16	XRD Pattern of TiO ₂ Nanoparticle Sample Deposited at 700°C with Carrier Gas Flowrate of 400 mL/min using TTIP Precursor	143
4.17	Photocatalytic Activity of TiO ₂ Nanoparticle Samples Deposited at 700°C with Carrier Gas Flowrate of 400 mL/min Using TBOT and TTIP Precursors. Graph Fitted with Linear Trendline from Which the Rate Constants Were Determined. TiO ₂ Loading: 0.02 g, Concentration of Methylene Blue: 6 ppm	145
4.18	EDX Spectras of Undoped and Fe-doped TiO ₂ Nanoparticle Samples	149
4.19	XPS Spectras of Undoped and Fe-doped TiO ₂ Nanoparticle Samples	151
4.20	TEM Micrographs (Left) and Corresponding Particle Size Distribution Histograms (Right) of TiO ₂ Nanoparticle Samples Deposited at (a) 400° C - 0.01 g Fe Dopant, (b) 400° C - 0.05 g Fe Dopant, (c) 700° C - 0.01 g Fe Dopant, and (d) 700° C - 0.05 g Fe Dopant	153
4.21	XRD Patterns of Undoped and Fe-Doped TiO ₂ Nanoparticle Samples Deposited at (a) 400°C and (b) 700°C. (i) Undoped, (ii) 0.005 g Fe Dopant, (iii) 0.01 g Fe Dopant, (iv) 0.03 g Fe Dopant, and (v) 0.05 g Fe Dopant	155
4.22	Diffuse Reflectance Spectra of Undoped and Fe-doped TiO ₂ Nanoparticle Samples Deposited at 700°C Including Degussa P25	159
4.23	Photocatalytic Activity of Undoped and Fe-Doped TiO_2 Nanoparticle Samples Including Degussa P25 Under (a) UV Light Illumination and (b) Fluorescent Lamp. Graphs Were Fitted With Linear Trendlines from Which the Rate Constants Were Determined. TiO ₂ Loading: 0.02 g, Concentration of Methylene Blue: 6 ppm	162
4.24	(a) Particle Size Distribution and (b) Zeta Potential Plot for Different Ultrasonication Amplitude Values	169
4.25	Effect of Type and Amount of Dispersant on the Average Cluster Size of TiO_2 Suspensions	171

4.26	Effect of Optimum Dispersant Addition on the Particle Size Distribution of TiO_2 Suspensions	173
4.27	Effect of Type of Dispersant and Amount of Dispersant on the Zeta Potential of TiO_2 Suspensions	174
4.28	TEM Micrographs of TiO_2 Nanoparticles Extracted from the Suspensions Prepared (a) without Ultrasonication, (b) with the Aid of Ultrasonication, and (c) with Dispersant Addition	176
4.29	Photos of TiO_2 Nanoparticle Suspensions on (a) Day 1, (b) Week 1, (c) Week 2, (d) Week 3, (e) Week 4, (f) Week 5, (g) Week 6, and (h) Week 8	177
4.30	FTIR Spectra of TiO ₂ Nanoparticles Before and After Adsorption of PAA2000	179
4.31	EDX Spectra of TiO ₂ Coatings Prepared (a) without Dispersant and (b) with PAA 2000 Dispersant Addition	180
4.32	Percentage Degradation of Formaldehyde Gas of TiO ₂ Coatings Produced from the Suspensions Prepared without Dispersant and with Optimum Dispersant Addition Under UV Light Irradiation. TiO ₂ Loading: 0.05 g TiO ₂ in 100 mL Distilled Water, Initial Concentration of Formaldehyde Gas: 2 ppm	181
4.33	Temperature Profiles Along the Reactor for M-R, S-R, and S+R	183
4.34	(a) Temperature Contours from Isometric, Top, Bottom, Right, Left, and Middle Plane Point of View and (b) Radial Temperature Contours at $z = 0.890, 0.178, 0.280, 0.478$, and 0.640 mm	185
4.35	Velocity Profiles Along the Reactor for S-R and S+R. Each Hump in the Velocity Profiles of S-R is Matched with a Recirculation Loop in the Velocity Vector Profile (Middle Plane of View) and Radial Velocity Vector Profiles of S-R at z = 0.060, 0.190, 0.280, 0.460, and 0.720 m (z Points of Five Humps)	187
4.36	Figure 4.36. Velocity Contour and Velocity Vector from Middle Plane Point of View (a) Inlet Region, (b) Heated Region, and (c) Outlet Region as well as (d) Radial Velocity Vector at $z = 0.089$, 0.178, 0.280, 0.478, and 0.640 m	189

4.37	(a) Contours of Mass Fractions of N_2 and O_2 Chemical Species from Middle Plane Point of View and (b) Streamlines of N_2 and O_2 Gases from Isometric, Top, Bottom, Right and Left Point of View	191
4.38	Mass Fraction Contours of TBOT, $TiO_2(g)$, C_4H_8 , and C_4H_9OH from the Middle Plane Point of View	194
4.39	(a) Kinetic Rates of Reactions 1 and 2, and (b) Surface Deposition Rate of $TiO_2(s)$	197
4.40	(a) Temperature and (b) Velocity Profiles Along the Centre Line of the Reactor and from the Middle Plane Point of View with Varying Deposition Temperatures	199
4.41	Mass Fraction Profiles of a) TBOT, (b) $TiO_2(g)$, (c) C_4H_8 , and (d) C_4H_9OH from the Centre Line of the Reactor with Varying Deposition Temperatures	202
4.42	(a) Kinetic Rates of Volumetric Reaction 1, (b) Kinetic Rates of Volumetric Reaction 2, (c) Maximum Kinetic Rate of Surface Reactions 3 and 4, and (d) Maximum Surface Deposition Rate Along with the Surface Deposition Rate Contours of $TiO_2(s)$ with Varying Temperature	204
4.43	Velocity Profiles Along the Centre Line of the Reactor and from the Middle Plane Point of View with Varying Carrier Gas Flowrate	208
4.44	(a) Maximum Kinetic Rate of Volumetric Reactions 1 and 2, (b) Maximum Kinetic Rate of Surface Reactions 3 and 4, and (c) Maximum Surface Deposition Rate Along with the Contours of Surface Deposition Rate of $TiO_2(s)$ with Varying Carrier Gas Flowrate	210

LIST OF SYMBOLS

а	Absorbance
Α	Pre-exponential factor
<i>C</i> _p	Specific heat capacity
С	Concentration
C_o	Initial concentration
D	Diameter
Ε	Thermodynamic internal energy
E_a	Activation energy
f_A	Fraction of anatase crystal structure
G	Gibbs free energy
⊿G	Gibbs free energy difference
h	Enthalpy
hv	Photon energy
Ι	Unit tensor
I_A	X-ray intensities of the anatase (101) diffraction peak
I_R	X-ray intensities of the rutile (1 1 0) diffraction peak
J	Diffusion flux of species
k	Rate constant
k _H	Heat conduction coefficient
K	Constant
Μ	Results obtained manually
M_w	Average molecular weight
Р	Pressure

R	Gas constant
Re	Revnold numbers
-R	Without chemical reaction
⊥R	With chemical reaction
S	Results obtained from CED simulation
S	Seefree eres
SA	Surface area
Т	Temperature
v	Vector velocity
V _{avg}	Average velocity
Y	Mass fraction
β	Corrected band broadening
θ	Diffraction angle
λ	Wavelength
μ	Viscosity
ρ	Density
ho g	Gravitional body force
= τ	Stress tensor
Subscript _j	Species j

LIST OF ABBREVIATIONS

fwhm	Full width at half-maximum
i.e.p.	Isoelectric point
BET	Brunauer-Emmett-Teller
CFD	Computational fluid dynamics
CVD	Chemical vapour deposition
DDL	Diacetyldihydrolutidine
DRS	UV-vis diffuse reflectance spectrophotometer
EDX	Energy x-ray dispersive spectroscopy
EELS	Electron energy loss spectroscopy
FTIR	Fourier transform infrared
GRAS	Generally regarded as a safe material
HTC	Heat transfer coefficient
MOCVD	Metal organic chemical vapour deposition
PAA	Polyacrylic acid
SAXS	Small angle X-ray scattering
SEM	Scanning electron microscope
STEL	Short term exposure limit
твот	Titanium (IV) butoxide
TEM	Transmission electron microscope
TGA	Thermogravimetry
TTIP	Titanium isopropoxide
UV	Ultraviolet
XPS	X-ray photoelectron spectroscopy

XRD X-ray diffraction

TABLE OF CONTENTS

	Page
ABSTRACT	ii
ABSTRAK	iv
ACKNOWLEDGEMENTS	vi
APPROVAL	viii
DECLARATION	Х
LIST OF TABLES	xi
LIST OF FIGURES	xii
LIST OF SYMBOLS	xviii
LIST OF ABBREVIATIONS	XX

 $\overline{(}$

CHAPTER			
1	INTR	RODUCTION	1
	1.1	Background	1
	1.2	Problem Statement	5
	1.3	Objectives and Scope of Work	6
	1.4	Research Contributions	8
	1.5	Thesis Outline	9
2	LITE	CRATURE REVIEW	11
	2.1	Titanium Dioxide	11
		2.1.1 Photocatalytic Reaction of TiO ₂ Nanoparticles	13
		2.1.2 Photocatalytic Properties of TiO ₂	16
		Nanoparticles	10
		2.1.3 Commercial TiO ₂ Nanoparticle (Degussa P25)	22
	22	Fe-doned TiO ₂	$\frac{22}{24}$
	2.2	2.2.1 Photocatalytic Reaction of Fe-doned TiO	26
		2.2.7 Fe Doning Mechanism	20
	2.3	Metal Organic Chemical Vapour Deposition	31
	2.5	2.3.1 MOCVD Reactor System	36
		2.3.2 MOCVD Processes	40
	24	Dispersion and Stabilization for Coating Applications	48
	2.1	2.4.1 Dispersion Mechanism	51
		2.4.2 Stabilization Mechanism	55
	25	Computational Fluid Dynamics Simulation	62
	2.5	2.5.1 Governing Equations in Fluid Dynamics	64
		2.5.2 Boundary Conditions in CVD Processes	67
		2.5.2 CVD Simulation Study on TiO ₂ Synthesis	69
3	MAT	'ERIALS AND METHODS	73
	3.1	Custom-Built MOCVD Reactor	75
	3.2	Synthesis, Characterization, and Photocatalytic	76
		Activity of Undoped and Fe-doped TiO ₂	
		Nanoparticles	
		3.2.1 Synthesis of Undoped and Fe-doped TiO_2	76
		Nanoparticles	

	3.2.2	Characterization of Undoped and Fe-doped	78
	2 2 2 2	110_2 Nanoparticles	0.1
	3.2.3	Photocatalytic Activity of Undoped and Fe-	81
2	2 D'	doped 110_2 Nanoparticles	02
3.	3 Disper	rsion and Coatings of 110_2 Nanoparticles	83
	3.3.1	Starting TiO_2 Nanoparticles	83
	3.3.2	Aqueous Suspensions and Coatings	83
		Preparation	
	3.3.3	Characterization of Aqueous Suspensions and Coatings	85
	3.3.4	Photocatalytic Activity of Coatings	86
3	4 Comp	utational Fluid Dynamics Simulations	89
	341	Reactor Configuration and Parameters	89
	342	Reactions	90
	343	Simulation Procedure	92
	344	Methodology	95
	5.7.7	Wethodology	15
4 R	ESULTS A	ND DISCUSSION	97
4	1 Synthe	esis Characterization and Photocatalytic	97
	Activi	ty of Undoped and Fe-doped TiO ₂	71
	Nanor	particles	
	4 1 1	Undoped TiO ₂ Nanoparticles without the	98
	7.1.1	Presence of O ₂ feed	70
	412	Undoped TiO ₂ Nanoparticles with the	110
	1.1.2	Presence of O ₂ feed	117
	413	Fe-doped TiO ₂ Nanoparticles	146
4	2 Disper	rsion and Coatings of TiO ₂ Nanoparticles	168
т.	2 Disper	Dispersion of TiO_2 Nanoparticles	168
	4.2.1	Costings of TiO. Nanoparticles	180
1	3 Comp	utational Fluid Dynamics Simulations	182
+.	4 3 1	Temperature Profiles	182
	4.3.1	Velocity Profiles	186
	4.3.2	Mass Fraction and Gas Streamline Profiles	100
	4.3.3	Kinetic Pate of Peaction and Surface	105
	4.3.4	Deposition Profiles	195
	135	Effect of Deposition Temperature	108
	4.3.5	Effect of Carrier Cas Flowrate	207
	4.5.0	Effect of Carrier Gas Flowfate	207
5 C	ONCLUSI	ONS AND RECOMMENDATIONS	211
5.	1 Conch	usions	211
	5.1.1	Synthesis, Characterization, and	211
	01111	Photocatalytic Activity of Undoped and Fe-	
		doped TiO ₂ Nanoparticles	
	512	Dispersion and Coatings of TiO_2	215
	5.1.4	Nanoparticles	213
	5.1.3	Computational Fluid Dynamics Simulations	216
5.	2 Recon	nmendations	217
	1.0001		_1,
REFERENCES			

APPENDICE	S	234	
А	Equations Used by ANSYS Fluent 12.0 to Calculate the	235	
	Results for Volumetric and Wall Surface Reactions		
B1	Isoelectric Point of TiO ₂ Nanoparticles	239	
B2	Transmission Spectra of TiO ₂ Coatings for Various Amount		
	of Loading		
B3	Effect of Activation Energy	241	
B4	Temperature Profiles with Varying HTC Value (W/m ² K)	244	
B5	Adsorption and Photocatalytic Activity of TiO ₂ Nanoparticle	245	
	Samples Deposited at Different Deposition Temperatures		
	with and without Heat Treatment		
B6	Quantitative Evaluation of the Bandgap Energy of Undoped	248	
	and Fe-doped TiO ₂ Samples Including the Commercial		
	Degussa P25		
B7	Adsorption and Degradation of Formaldehyde Gas of TiO ₂	249	
	Coatings Produced from the Suspensions Prepared without		
	Dispersant and with Optimum Dispersant Addition		
C	Flow of Results and Discussion Chapter	250	
BIODATA OF STUDENT			
LIST OF PUBLICATIONS			

C