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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment  

of the requirement for the degree of Doctor Philosophy 

 

 

CHARACTERIZATION AND DISPERSION BEHAVIOR OF TITANIUM 

DIOXIDE AS PHOTOCATALYTIC NANOPARTICLES USING METAL 

ORGANIC CHEMICAL VAPOUR DEPOSITION SYSTEM 

 

By 

 

SITI HAJAR BINTI OTHMAN 

 

December 2011 

 

 

Chair: Suraya Abdul Rashid, PhD 

 

Faculty: Faculty of Engineering 

 

Metal organic chemical vapour deposition (MOCVD) is a favourable technique to 

synthesize nanoparticles owing to the relative ease and simplicity of the process. In 

the MOCVD system, the presence of heat decomposes gaseous reactants to form a 

stable solid product. The motivation of the present work was to study the synthesis, 

doping, characterization, dispersion, and photocatalytic properties of TiO2 

nanoparticles synthesized via MOCVD. Computational fluid dynamics (CFD) 

simulation was utilized to provide better understanding on the MOCVD synthesis 

system as well as fluid dynamics inside the reactor.  

 

It was found that deposition temperature plays an important role in determining the 

properties of the synthesized TiO2 nanoparticles such as particle size and 

crystallinity. Crystallinity was determined to have significant influence on 

photocatalytic activity compared to particle size. The nanoparticles heat treated at 

temperatures higher than or equal to the deposition temperature had improved 

photocatalytic activity. Thus, it was deduced that the choice of heat treatment 



© C
OPYRIG

HT U
PM

 

 

iii 

 

temperature should be made in view of the deposition temperature. Fe doping was 

found to promote the phase transition, slightly decrease the particle size, and enhance 

the absorption of TiO2 nanoparticles in the visible spectrum. However, the 

photocatalytic activity decreased due to the unfavourable location of Fe ion inside 

the interior matrix of the TiO2 nanoparticles rather than on the exterior surface.  

 

For the dispersion study, rupture followed by erosion was determined to be the main 

break up mechanisms when ultrasonication was employed. 3 weight% of polyacrylic 

acid with average molecular weight of 2000 g/mol was determined to produce the 

best dispersion and most stable suspension. The coatings were confirmed to be 

photocatalytically active.  

 

Finally, the CFD simulation results indicate that increasing deposition temperature 

and reducing carrier gas flowrate increases the surface deposition rate and the 

amount of TiO2 nanoparticles produced. Temperature plays remarkable part in 

determining the rate of surface deposition of TiO2 nanoparticles compared to carrier 

gas flowrate. Flow recirculations were found to occur in the reactor due to protrusion 

and large temperature gradient. Good mixing of N2 and O2 gases is important to 

ensure the deposition uniformity. Good agreement between experimental and 

simulation results lends support to the reliability of the simulations work. 

 

In conclusion, this work opens the window towards improving and optimizing the 

synthesis process of nanoparticles via MOCVD method as well as offers knowledge 

on the dispersion and stabilization of nanoparticles towards advancement for 

industrial applications. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 

memenuhi keperluan untuk ijazah Doktor Falsafah 

 

 

PENCIRIAN DAN SIFAT PENYERAKAN TITANIUM DIOKSIDA SEBAGAI 

NANOPARTIKEL FOTOKATALITIK MENGGUNAKAN SISTEM 

PENGENAPAN WAP KIMIA LOGAM ORGANIK 

 

Oleh 

 

SITI HAJAR BINTI OTHMAN 

 

Disember 2011 

 

 

Pengerusi: Suraya Abdul Rashid, PhD 

Fakulti: Fakulti Kejuruteraan 

 

Pengenapan wap kimia logam organik (MOCVD) adalah teknik yang digemari untuk 

mensintesis nanopartikel relatif dengan kemudahan dan kesederhanaan proses 

tersebut. Dalam proses MOCVD, kehadiran haba menguraikan gas bahan tindak 

balas untuk membentuk produk pepejal yang stabil. Motivasi kerja ini adalah untuk 

mengkaji sintesis, pengedopan, pencirian, penyebaran, dan sifat-sifat fotokatalitik 

nanopartikel TiO2 yang disintesis menggunakan MOCVD. Simulasi pengiraan 

dinamik bendalir (CFD) digunakan untuk memberikan pemahaman yang lebih baik 

mengenai sistem sintesis MOCVD serta dinamik bendalir di dalam reaktor.  

 

Suhu pengenapan didapati memainkan peranan penting dalam menentukan sifat-sifat 

nanopartikel TiO2 yang disintesis seperti saiz partikel dan kristaliniti. Kristaliniti 

didapati mempunyai pengaruh yang besar ke atas aktiviti fotokatalitik berbanding 

saiz partikel. Terdapat peningkatan dalam aktiviti fotokatalitik nanopartikel yang 

dirawat pada suhu yang lebih tinggi daripada atau sama dengan suhu pengenapan. 

Kesimpulannya, pemilihan suhu rawatan haba perlu dibuat berpandukan suhu 
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pengenapan. Pengedopan Fe didapati menggalakkan peralihan fasa, mengurangkan 

sedikit saiz partikel, dan meningkatkan penyerapan nanopartikel TiO2 ke spektrum 

boleh lihat. Walau bagaimanapun, aktiviti fotokatalitik berkurangan kerana lokasi ion 

Fe
 

yang tidak diingini iaitu di dalam matriks dalaman nanopartikel TiO2 dan 

bukannya pada permukaan luaran.  

 

Untuk kajian penyerakan, didapati bahawa pemecahan diikuti oleh hakisan adalah 

mekanisme utama penggunaan ultrasonik. 3% berat asid poliakrilik dengan purata 

berat molekular 2000 g/mol didapati dapat menghasilkan penyerakan yang terbaik 

dan ampaian yang paling stabil. Saduran telah disahkan aktif fotokatalitik.  

 

Akhir sekali, keputusan simulasi CFD menunjukkan bahawa kadar permukaan 

pengenapan dan jumlah nanopartikel TiO2 yang dihasilkan meningkat dengan 

peningkatan suhu pengenapan dan pengurangan kadar aliran gas pembawa. Suhu 

memainkan peranan yang penting dalam menentukan kadar permukaan pengenapan 

nanopartikel TiO2 berbanding kadar aliran gas pembawa. Aliran edaran semula 

didapati berlaku di dalam reaktor kerana jorokan dan perbezaan suhu yang besar. 

Percampuran yang baik antara gas N2 dan O2 adalah penting untuk memastikan 

keseragaman pengenapan. Persamaan yang baik antara keputusan ujikaji dan 

simulasi menyokong kredibiliti kerja simulasi. 

 

Kesimpulannya, kerja ini membuka peluang ke arah memperbaiki dan 

mengoptimumkan proses sintesis nanopartikel menerusi kaedah MOCVD serta 

menawarkan pengetahuan mengenai penyerakan dan kestabilan nanopartikel ke arah 

kemajuan untuk aplikasi perindustrian. 
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