UNIVERSITI PUTRA MALAYSIA

CONCEPTUAL DESIGN, DEVELOPMENT AND FABRICATION OF A PROTOTYPE ERGONOMIC LUMBAR SUPPORT FOR MOTORCYCLISTS

KARMEGAM KARUPPIAH

FK 2011 145
CONCEPTUAL DESIGN, DEVELOPMENT AND FABRICATION OF A PROTOTYPE ERGONOMIC LUMBAR SUPPORT FOR MOTORCYCLISTS

By

KARMEGAM KARUPPIAH

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

December 2011
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of
the requirement for the degree of Doctor of Philosophy

CONCEPTUAL DESIGN, DEVELOPMENT AND FABRICATION OF A
PROTOTYPE ERGONOMIC LUMBAR SUPPORT FOR MOTORCYCLISTS

By

KARMEGAM KARUPPIAH

December 2011

Chair: Mohd Sapuan Salit PhD, PEng

Faculty: Engineering

This study was conducted with the intention to investigate the need, design, develop,
fabricate and testing a prototype of an ergonomic lumbar support for motorcyclists. The
development process began with identifying the importance and the problems of existing
motorcycles in the market. Motorcycle is the second common modes of transportation in
Malaysia. As a relatively cheap and reliable mode of transportation, it is widely used by
a large cross section of peoples. However, the current motorcycle design does not
accommodate a back posture support and motorcyclists are more exposed to
musculoskeletal disorders (such as low back pain). This study was undertaken in 5
stages (methods) in order to achieve its objective; survey on motorcyclists discomfort,
anthropometric data collection, design, develop and fabricate the prototype using Pugh’s
Total Design Process Model, Testing 1 (using Borg’s Scale) and Testing 2 (using
Electromyography (EMG)) . The whole study was conducted in Polytechnic Sultan
Azlan Shah, Perak, using the students (motorcyclists) as the sample. Their age ranges 18
to 24 years old. The results (survey) indicate that, majority (>50%) of the motorcyclists
experienced discomfort in their body parts during the riding process. Higher discomfort
rate was reported on the motorcyclist’s upper body parts (neck or head, shoulder, upper
back, arms and hands, low back and buttocks) and correlated with their the riding
posture. The critical design dimensions for the prototype (height, width, adjustable range
and thickness) were obtained from the anthropometric dimensions of motorcyclists and
were used in the design process. The subjective method results highlight that the rate of discomfort level (in all body parts) decreased over time during the testing period with the prototype (lumbar support). In terms of the discomfort ‘break point’, the motorcyclists identified low back and upper back as the most affected body parts prior to comfort changes during the testing period with the use of the prototype. Meanwhile, the electromyography results show a reduction of muscle activity in the lumbar region in term of the average EMG values, maximal voluntary contraction (%MVC) of EMG activities at the 10th, 50th and 90th percentile and EMG change over time (mean % change per measurement period). Overall, the use of prototype provides a protective mechanism (provides postural stability and integrity) for the motorcyclist’s musculoskeletal system, particularly the spinal column (from exposures to intensity, duration and frequency of physical risk factors which contribute to the low back pain). Therefore, this prototype is capable of providing ideal posture while simultaneously enhancing the comfortability (reduce discomfort) of the motorcyclist during the riding process. However, further evaluation on the prototype needs to be conducted to determine their stability, solidity, durability and safety over prolonged use.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

REKABENTUK KONSEPTUAL, PEMBANGUNAN DAN FABRIKASI SATU PROTOTAIP ERGONOMIK BAGI PENYANDAR POSTUR LUMBAR UNTUK PENUNGGANG MOTOSIKAL

Oleh

KARMEGAM KARUPPIAH

Disember 2011

Pengerusi: Mohd Sapuan Salit PhD, PEng

Fakulti: Kejuruteraan

ACKNOWLEDGEMENTS

One of the great aspects of writing thesis is that it presents a formal opportunity for the researcher to thank individuals who have had positive influences on both the researcher and the text. Many different people and organizations were of immense assistance throughout the period of completing this research and thesis. First and foremost, I am very grateful to God and Almighty for his wonderful blessings and guidance.

I would like to express my gratitude to my supervisory committee chairman, Professor Ir. Dr. Mohd. Sapuan Salit, who constantly motivated me with his knowledge and insight, throughout the course of my research study. I am also grateful to the members of supervisory committee, Professor Ir. Dr. Mohd Yusof Ismail (who is also the former chairman of this committee before his departure to the Universiti Malaysia Pahang) and Prof. Datin Dr Napsiah Ismail for sharing their expertise and experience.

Certainly this research would not be possible without the institution support and assistance, in particular the Department of Community Health, Universiti Putra Malaysia and Polytechnic of Sultan Azlan Shah, Tanjung Malim. I would like to forward my appreciation to Dr Shamsul Bahri Mohd Tamrin, Dr Kulanthayan K.C. Mani and Mr G Mohana Krishnan for their continuous support.

Appreciation is also due to my fellow colleagues and friends who have given their precious support, encouragement and assistance, especially Mr Sivakumar Superiamian, Mrs Tamil Moli Loganathan, Mr Murugadas Ramdas, Mr Mohd Hanapi Jusoh, Mr Riza Wirawan and Mrs Kastury Kandiah. And not forgotten, I also would like to offer my deepest gratitude for all the participants who supported during the research process.

Last but not least, I am forever grateful to my parents, who have taught me the moral value of lives, to my wife, Mrs Seetha Palanimuthu and my lovely daughter Swetta Karmegam who continuously supported during the completion of this project.
APPROVAL

I certify that an Examination Committee met on 1.12.2011 to conduct the final examination of Karmegam Karuppiah on his Doctor of Philosophy thesis entitled “Conceptual design, development and fabrication of a prototype ergonomic lumbar support for motorcyclists” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the Doctor of Philosophy.

Members of the Examination Committee are as follows:

Shamsuddin Sulaiman, PhD
Professor
Universiti Putra Malaysia
(Chairman)

Mohd Khairul Anuar b. Mohd Ariffin, PhD
Associate Professor
Universiti Putra Malaysia
(Internal Examiner)

Aidy b. Ali, PhD
Associate Professor
Universiti Putra Malaysia
(Internal Examiner)

C.R. Chatwin, PhD
Professor
University of Sussex
(External Examiner)

SEOW HENG FONG, Ph.D
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:

vii
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirements for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Mohd. Sapuan Salit, PhD, PEng
Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Mohd Yusof Ismail, PhD
Professor
Faculty of Engineering
Universiti Malaysia Pahang
(External Member)

Napsiah Ismail, PhD
Professor
Faculty of Engineering
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or other institution.

KARMEGAM KARUPPIAH

Date: 1 December 2011
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>ABSTRACT</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRAK</td>
<td></td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td></td>
</tr>
<tr>
<td>APPROVAL</td>
<td></td>
</tr>
<tr>
<td>DECLARATION</td>
<td></td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td></td>
</tr>
</tbody>
</table>

CHAPTER

1. **INTRODUCTION**
 1

2. **LITERATURE REVIEW**
 9
 2.1 Introduction
 9
 2.2 Ergonomic Product Design Guidelines
 10
 2.3 Ergonomic Design Characteristics
 13
 2.3.1 Ergonomic Product Design Process
 13
 2.3.2 Designing for Human Use
 17
 2.3.3 Ergonomic Product Evaluations
 18
 2.4 Ergonomics
 19
 2.4.1 Definition
 19
 2.4.2 Major disciplines in ergonomic
 20
 2.5 Ergonomic definition in motorcyclist-motorcycle interaction
 22
 2.6 Comfort in motorcycle ergonomic
 23
 2.7 The conceptual model of motorcyclist discomfort
 27
 2.8 Motorcyclist’s Body System / Anatomy System
 31
 2.8.1 Musculoskeletal Systems
 31
 2.8.2 Biomechanics of Musculoskeletal Systems
 32
 2.8.3 Low Back
 36
 2.8.4 Summary of Motorcyclists Body System
 37
 2.9 Motorcycle
 38
 2.9.1 Introduction on Motorcycle
 38
 2.9.2 Motorcycles studies
 40
 2.9.3 Motorcycle design complexity
 40
 2.9.4 Summary of Motorcycle system
 41
 2.10 Working Environment
 42
 2.11 Statistical Package for the Social Sciences (SPSS)
 43
 2.12 Summary
 44
3 METHODOLOGY

3.1 Study Design

3.2 Stage 1
3.2.1 Study model 1
3.2.2 Population and sample of the study
3.2.3 Procedure of study
3.2.4 Data collection instrument
3.2.5 Data analysis procedure

3.3 Stage 2
3.3.1 Study model 2
3.3.2 Population and sample of the study
3.3.3 Body dimensions
3.3.4 Equipment
3.3.5 Anthropometric survey group
3.3.6 Data analysis

3.4 Stage 3
3.4.1 Study model 3
3.4.2 Anthropometric dimensions

3.5 Stage 4
3.5.1 Study model 4
3.5.2 Study Population
3.5.3 Sampling Unit
3.5.4 Sampling Size
3.5.5 Sampling Method
3.5.6 Study variables
3.5.7 Workstation setting
3.5.8 Preparation of the participants
3.5.9 Data collection instrument: Questionnaire design (Borg scale measurements)
3.5.10 Data collection techniques
3.5.11 Data analysis
3.5.12 Determination of data distribution

3.6 Stage 5
3.6.1 Study model 5
3.6.2 Study Population
3.6.3 Sampling Unit
3.6.4 Sampling Size
3.6.5 Sampling Method
3.6.6 Study variables
3.6.7 Workstation setting
3.6.8 Preparation of the participants
3.6.9 Data collection instrument: Electromyography (EMG)
3.6.10 Placement of electrode
3.6.11 Data collection techniques
3.6.12 EMG data measurements
3.6.13 Data analysis
3.6.14 Determination of data analysis
3.6.15 Univariate and Bivariate analysis

4	A STUDY ON MOTORCYCLIST'S RIDING DISCOMFORT IN MALAYSIA	82
	Article 1	84
	Acceptance letter	100
	Copyright permission	101

5	MOTORCYCLIST’S RIDING DISCOMFORT IN MALAYSIA: COMPARISON OF BMI, RIDING EXPERIENCE, RIDING DURATION AND RIDING POSTURE	102
	Article 2	102
	Acceptance letter	124
	Copyright permission	125

6	ANTHROPOMETRY OF MALAYSIAN YOUNG ADULTS	126
	Article 3	126
	Acceptance letter	138
	Copyright permission	139

7	ANTHROPOMETRIC STUDY AMONG ADULTS OF DIFFERENT ETHNICITY IN MALAYSIA	140
	Article 4	140
	Acceptance letter	160
	Copyright permission	161

8	CONCEPTUAL DESIGN AND PROTOTYPE OF AN ERGONOMIC BACK-LEANING POSTURE SUPPORT FOR MOTORBIKE RIDERS	162
	Article 5	162
	Acceptance letter	179
	Copyright permission	180

9	CONCEPTUAL DESIGN OF MOTORCYCLE’S LUMBAR SUPPORT USING MOTORCYCLISTS’ ANTHROPOMETRIC CHARACTERISTICS	181
	Article 6	181
	Acceptance letter	198
	Copyright permission	199
10 EVALUATION OF MOTORCYCLIST’S DISCOMFORT DURING PROLONGED RIDING PROCESS WITH AND WITHOUT LUMBAR SUPPORT 200
Article 7 208
Proof of submission 229

11 THE PROTOTYPE OF LUMBAR SUPPORT: EXPERIMENTAL EVALUATION OF MOTORCYCLIST’S SEATING COMFORTABILITY USING ELECTROMYOGRAPHY ANALYSIS 230
Article 8 230
Proof of submission 264

12 SUMMARY, GENERAL CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH 265

REFERENCES 275
APPENDICES 293
BIODATA OF STUDENT 300
LIST OF PUBLICATION 301