UNIVERSITI PUTRA MALAYSIA

ALL-OPTICAL MULTIWAVELENGTH FIBER LASERS
BASED ON STIMULATED BRILLOUIN SCATTERING

ZUBAIDAH BINTI ABD. RAHMAN

FK 2011 143
ALL-OPTICAL MULTIWAVELENGTH FIBER LASERS BASED ON STIMULATED BRILLOUIN SCATTERING

ZUBAIDAH BINTI ABD. RAHMAN

MASTER OF SCIENCE
UNIVERSITI PUTRA MALAYSIA

2011
ALL-OPTICAL MULTIWAVELENGTH FIBER LASERS BASED ON
STIMULATED BRILLOUIN SCATTERING

By

ZUBAIDAH BINTI ABD. RAHMAN

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in
Fulfillment of the Requirements for the Degree of Master of Science

September 2011
DEDICATION

This work was accomplished driven by the feeling of love and faithful dedicated to a loving husband, Nurul Azam Bin Ahmad Ishak and also a father to a sweet little baby of Damia Arissa Bt Nurul Azam. May Allah SWT award us a more blessed life, Amin.
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Master of Science

ALL-OPTICAL MULTIWAVELENGTH FIBER LASERS BASED ON STIMULATED BRILLOUIN SCATTERING

By

ZUBAIDAH BINTI ABD. RAHMAN

September 2011

Chairman: Salasiah Bt. Hitam, PhD

Faculty: Engineering

This thesis focuses on Multiwavelength comb generation in Fiber Lasers based on nonlinear effect in fiber optics named Stimulated Brillouin Scattering (SBS). The study had been carried out both in the linear cavity fiber laser and ring cavity fiber laser. A 5 km single mode fiber (SMF-28) was used as a Brillouin gain medium in the linear cavity of Brillouin/Erbium Fiber Laser (BEFL) incorporating a Tunable Bandpass Filter (TBF). A filter is recently used as a solution for having wider tunability of multiwavelength BEFL (MWBEFL) by suppressing the unwanted cavity mode and allowing the oscillation mode to be occurred at selected band. The exact location of Brillouin Pump (BP) wavelength to take place in order to have the optimum number of channel had been thoroughly studied. However, this technique has the limitation in the
number of channel generated which depends on the filter bandwidth as well as the multiwavelength BEFL tunability that depends on the tunability of the filter.

Two structures of ring cavity Fiber Lasers utilizing 11 km Dispersion Compensation Fiber (DCF) as the Brillouin gain medium which had been successfully demonstrated recently were improved by the development and improvement of the amplifier block as intended in this research work. Three different types of amplifier structures were demonstrated and the performance of each structure was studied. The conventional amplifier structure which consists of 8 m Erbium Doped Fiber (EDF) but pumped with 975 nm at maximum power of 616 mW, came out as the ideal pumping scheme to be used in this research work. The issue of low number of channel in a MWBEFL with a concept of virtual mirror which had been successfully demonstrated with an achievement of wide tunability of the entire Conventional-band (C-band) that only limited by the amplification area was successful resolved. Up to 9 laser lines were observed by utilizing the newly proposed pumping scheme.

Another technique of having wide tuning range is the enhanced reverse-S-shaped BEFL. By using a pre-amplification technique, 10 laser lines was reported with the maximum output power of 20 mW. The issue of narrow tuning range which is only 14.8 nm tunability achieved from this structure was also successfully resolved with a new structure design. The ratio of the output signal that coupled to the Optical Spectrum Analyzer (OSA) was investigated beforehand. A series of experiment were carried out to find out the optimum output coupling ratio by varying the ratio of the variable
coupler from 5% to 80%. The output power, number of channels and tuning range of each coupling ratio were recorded. The optimum output coupling ratio was found to be 10% which was measured based on the number of output channel and its tunability. As a result, 44 nm wide of tuning range was achieved in the reverse-S-shaped Multiwavelength Brillouin Fiber Laser (MWBFL) at 10% of output coupling ratio by utilizing the newly proposed pumping scheme.

A 2 km of Highly Non-linear Fiber (HNLF) was also considered to replace the 11 km DCF as the Brillouin gain medium in the reverse-S-shaped structure. The performance of these two different fibers which act as the Brillouin gain medium was compared. HNLF was found to be a better Brillouin gain medium that managed to give 11 laser lines which can be tuned from 1520 nm to 1560 nm (40 nm) as compared to 11 km DCF.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

LASER GENTIAN PELBAGAI JARAK GELOMBANG OPTIK-SEPENUHNYA BERDASARKAN PENYERAKAN BRILLOUIN TERANGSANG

Oleh

ZUBAIDAH BINTI ABD. RAHMAN

September 2011

Pengerusi: Salasiah Bt. Hitam, PhD

Fakulti: Kejuruteraan

lebar jalur penapis serta kebolehtalaan BEFL pelbagai jarak gelombangnya bergantung kepada kebolehtalaan penapis.

Dua struktur laser gentian berongga cincin yang menggunakan gentian penggantian penyerakan (DCF) dengan panjang 11 km sebagai medium gandaan Brillouin yang mana telah berjaya ditunjukkan baru-baru ini telah diperbaiki dengan pembangunan dan peningkatan blok penguat seperti yang disarankan di dalam kerja penyelidikan ini. Tiga jenis struktur penguat yang berbeza telah ditunjukkan dan prestasi setiap struktur telah dikaji. Struktur penguat konvensional yang terdiri daripada gentian Erbium terdop (EDF) dengan panjang 8 m tetapi dipamkan dengan pam 975 nm pada kuasa maksimumnya 616 mW, muncul sebagai skim pengepaman ideal untuk diguna pakai di dalam kerja penyelidikan ini. Isu jumlah saluran yang rendah di dalam MWBEFL yang menggunakan konsep cermin maya yang mana telah ditunjukkan dengan jayanya dengan satu pencapaian kebolehtalaan seluas seluruh jalur konvensional (C-band) yang hanya dihadkan oleh kawasan penguatan, telah berjaya diselesaikan. Sebanyak 9 garis laser telah diperhatikan dengan menggunakan skim pengepaman baru yang dicadangkan.

Satu lagi kaedah berbeza untuk memperolehi satu julat penalaan yang luas ialah dengan peningkatan BEFL pembalikan berbentuk S. Dengan menggunakan teknik pra penguatan, 10 garis laser telah dilaporkan dengan kuasa keluaran maksimum 20 mW. Isu julat penalaan sempit yang hanya mencapai kebolehtalaan sebanyak 14.8 nm dari struktur ini juga telah berjaya diselesaikan dengan susunan struktur yang baru. Nisbah
isyarat keluaran yang digandingkan kepada penganalisa spektrum optik (OSA) telah disiasat terlebih dahulu. Satu siri eksperimen telah dijalankan untuk mengetahui nisbah gandingan keluaran optimum dengan mengubah nisbah pengganding bolehubah dari 5% kepada 80 %. Kuasa keluaran, jumlah bilangan saluran dan julat penalaan setiap nisbah gandingan telah direkodkan. Nisbah gandingan keluaran optimum telah didapati pada nisbah 10% di mana ianya diukur berdasarkan jumlah bilangan saluran dan kebolehtalaannya. Hasilnya, julat penalaan seluas 44 nm telah dicapai di dalam BFL pelbagai jarak gelombang (MWBFL) pembalikan berbentuk S pada nisbah gandingan keluaran 10% dengan menggunakan skim pengepaman baru yang dicadangkan.

Satu gentian tidak lelurus yang tinggi (HNLF) dengan panjang 2 km juga telah dipertimbangkan untuk menggantikan DCF dengan panjang 11 km sebagai medium gandaan Brillouin di dalam struktur pembalikan berbentuk S. Prestasi kedua-dua gentian yang berbeza ini yang bertindak sebagai medium gandaan Brillouin telah dibandingkan. HNLF dengan panjang 2 km telah didapati menjadi medium gandaan Brillouin yang lebih baik yang berjaya memberi 11 garis laser yang mana boleh ditala dari 1520 nm sehingga 1560 nm (40 nm) jika dibandingkan dengan DCF yang panjangnya 11 km.
ACKNOWLEDGEMENTS

Praises be to Allah SWT. With gratitude, I thank Him for giving me the strength and health in going through all the difficulties during undertaking this research project. With His guidance and directions, eventually, this thesis was able to be completed.

I would like to thank my supervisor, Dr Salasiah Bt. Hitam for her encouragement, advice and supports. Deepest gratitude are also due to the members of supervisory committee, Dr Ahmad Fauzi b. Abas and Prof Dr. Mohd Adzir b. Mahdi, and also my teachers, Dr Muhammad Al-Mansoori and Dr Muhammad Ajiya, without whose knowledge and assistance, this study would not have been successful. Very special thanks are expressed again to Prof Adzir who was abundantly very helpful and offered invaluable assistance. He has made his supports available in a number of ways.

I would also like to extend my acknowledgement to the laboratory technician, Sathzura bt Saidin for her kind help in providing the laboratory facilities. Special thanks also to the group members for sharing ideas and knowledge. Not forgetting to my bestfriends who were always been there for me; Jijah, Mikin, Pura, Apis, Yeo and Kak Nelly.

Last but not least, love and gratitude to my husband and beloved family; Mak, Abah, Along, Uda, Farid and Adik for their understanding and endless love through the duration of my study.
I certify that a Thesis Examination Committee has met on **19 September 2011** to conduct the final examination of **Zubaidah Bt Abd. Rahman** on her thesis entitled **“All-optical Multiwavelength Fiber Lasers Based On Stimulated Brillouin Scattering”** in accordance with Universities and University College Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Examination Committee were as follows:

Raja Syamsul Azmir bin Raja Abdullah, PhD
Professor Madya
Faculti of Engineering
Universiti Putra Malaysia
(Chairman)

Ratna Kalos Zakiah bt. Sahbudin, PhD
Faculty of Engineering
Universiti Putra Malaysia
/Internal Examiner

Siti Barirah bt. Ahmad Anas, PhD
Faculty of Engineering
Universiti Putra Malaysia
/Internal Examiner

Kaharudin bin Dimyati, PhD
Professor
Faculty of Engineering
Universiti Pertahanan Nasional Malaysia
/External Examiner

SEOW HENG FONG, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of **Master of Science**. The members of the Supervisory Committee were as follows:

Salasiah bt. Hitam, PhD
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Mohd Adzir bin Mahdi, PhD
Professor
Faculty of Engineering
Universiti Putra Malaysia
(Member)

Ahmad Fauzi bin Abas, PhD
Faculty of Engineering
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

ZUBAIDAH BINTI ABD. RAHMAN

Date: 19 September 2011
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>ix</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>x</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xix</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xx</td>
</tr>
</tbody>
</table>

CHAPTER 1

INTRODUCTION

1.1 Overview | 1
1.2 Problem Statement | 5
1.3 Objectives | 7
1.4 Scope of Work | 8
1.5 Thesis Organization | 10

CHAPTER 2

LITERATURE REVIEW

2.1 Principle of Laser | 11
2.2 Optical Amplifier | 14
2.3 Nonlinear Effects in Fiber Optics | 15
2.4 Stimulated Brillouin Scattering | 17
2.5 Effective Mode Area | 18
2.6 SBS Effects in Special Fibers | 20
2.7 Fiber Lasers | 20
2.7.1 Brillouin Fiber Lasers | 21
2.7.2 Multiwavelength Brillouin Fiber Laser | 22
2.7.3 Multiwavelength Brillouin/Erbium Fiber Laser | 26
2.8 Critical Review | 30

CHAPTER 3

METHODOLOGY

3.1 General | 32
3.2 Linear Cavity Tunable MWBEFL Incorporating a TBF | 34
3.3 Ring Cavity of Virtual Mirror MWBEFL | 38
3.3.1 Conventional Virtual Mirror MWBEFL | 38
3.3.2 Number of Channel Increment of Virtual Mirror BEFL | 40
3.4 Reverse-S-shaped MWBEFL | 48
3.4.1 Conventional Reverse-S-shaped BEFL | 48
3.4.2 Tuning Range Increment of Reverse-S-shaped BEFL

4 RESULTS AND DISCUSSION

4.1 Tunable BEFL Incorporating a TBF

4.2 Number of Channel Increment of Virtual Mirror MWBEFL
 4.2.1 A 30 dBm of Er/Yb Amplifier Module
 4.2.2 A 5 m of Er/Yb Co-doped Fiber Amplifier Pumped With Two 915 nm Laser Diodes
 4.2.3 Conventional Pumping Scheme Pumped with 975 nm Pump
 4.2.4 Discussion

4.3 Reverse-S-shaped BFL with Increased Tunability
 4.3.1 Optimization of Output Coupling Ratio
 4.3.2 Optimization on BP Power

4.4 DCF versus HNLF

5 CONCLUSION AND FUTURE WORK

5.1 Conclusion

5.2 Recommendation for Future Work

REFERENCES

LIST OF PUBLICATIONS

BIODATA OF STUDENT