

UNIVERSITI PUTRA MALAYSIA

FAULT DIAGNOSIS IN UNBALANCED RADIAL DISTRIBUTION NETWORKS USING GENERALISED REGRESSION NEURAL NETWORK

MARYAM MIRZAEI

FK 2011 17

FAULT DIAGNOSIS IN UNBALANCED RADIAL DISTRIBUTION NETWORKS USING GENERALISED REGRESSION NEURAL NETWORK

By

MARYAM MIRZAEI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

February 2011

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

FAULT DIAGNOSIS IN UNBALANCED RADIAL DISTRIBUTION NETWORKS USING GENERALISED REGRESSION NEURAL NETWORK

By

MARYAM MIRZAEI

February 2011

Chairman : Associate Professor Mohd. Zainal Abidin Ab Kadir, PhD

Faculty : Engineering

Fault location includes the determination of the physical location of the fault. Nowadays, about 80% of interruptions are caused by faults in distribution networks and the application of fault location algorithms developed for transmission system is not an easy task due to the topology and operating principles of the distribution networks. This thesis describes the technique of Probabilistic Neural Network (PNN) for fault type classification and Generalised Regression Neural Network (GRNN) for estimating the fault location. The results were compared with radial basic function neural network (RBFN) and feed forward neural network (FFNN).

The artificial intelligence (AI)-based fault locator has been implemented on a typical IEEE 13 node test feeder as short feeder with the feeder's nominal voltage is 4.16 kV. It is radial, unbalanced and includes both overhead line and underground cable and the 76-bus radial distribution system as a long feeder with two long main feeders

63/20 kV and 76 buses 20 kV. The neural network used only the voltage and current measurements obtained at the substation. The training patterns used to train the ANN model for fault location in radial distribution system were obtained by short circuit analysis under various fault conditions and fault impedances. To achieve this goal, the initial or pre-fault condition of the system has to be computed. Using the proposed method, less learning time of PNN is required for classification. The GRNN results show the effectiveness of the proposed method with good accuracy, as the fault point location determination is very close to the actual point with acceptable convergence time and accuracy.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

DIAGNOSIS KEROSAKAN DALAM RANGUAIAN AGIHAN TAK SEIMBANG MENGGUNAKAN GENERALISED REGRESSION NEURAL NETWORK

Oleh

MARYAM MIRZAEI

February 2011

Pengerusi : Profesor Madya Mohd. Zainal Abidin Ab Kadir, PhD

Fakulti : Kejuruteraan

Lokasi gangguan meliputi penentuan lokasi fizikal gangguan. Saat ini, sekitar 80% dari gangguan disebabkan oleh kesalahan dalam rangkaian pengagihan dan aplikasi algoritma lokasi gangguan yang dibangunkan untuk sistem penghantaran bukanlah tugas yang mudah kerana prinsip topologi dan operasi. Tesis ini menjelaskan teknik Probabilistic Neural Network (PNN) untuk klasifikasi jenis gangguan dan Generalised Regression Neural Network (GRNN) untuk menganggarkan lokasi gangguan. Hasilnya dibandingkan dengan Radial Basic Function Neural Network (RBFN) dan Feed Forward Neural Network (FFNN).

Penempat gangguan berasaskan kecerdasan buatan (AI) telah dilaksanakan pada IEEE 13 nod penyuap ujian yang biasa sebagai penyuap singkat dengan voltan nominal suapan adalah 4.16 kV. Ianya radial, tidak-seimbang dan merangkumi kedua-dua saluran udara dan kabel bawah tanah dan sistem pengagihan radial 76 bas sebagai penyuap panjang dengan dua penyuap panjang utama 63/20 kV dan 76 bas 20 kV. Rangkaian saraf hanya menggunakan pengukuran arus dan voltan yang diperolehi di pencawang. Pola-pola latihan yang digunakan untuk melatih model ANN untuk penempatan gangguan dalam sistem pengagihan radial diperolehi dengan analisis litar pintas di bawah keadaan gangguan pelbagai dan galangan gangguan. Untuk mencapai tujuan ini, keadaan awal atau pra-kesalahan sistem harus dikira. Dengan menggunakan kaedah yang dicadangkan, pengurangan waktu belajar PNN diperlukan untuk klasifikasi. Keputusan GRNN menunjukkan keberkesanan kaedah yang dicadangkan dengan ketepatan yang baik, di mana penentuan titik lokasi gangguan sangat dekat dengan titik yang sebenarnya dengan masa penemuan dan ketepatan yang boleh diterima.

ACKNOWLEDGEMENTS

In the Name of Allah, the Most Compassionate, the Most Merciful.

First, I would like to express my thanks and deepest gratitude to my supervisor, Associate Professor Dr. Mohd. Zainal Abidin Ab Kadir for his invaluable help, guidance, supervision and constant encouragement throughout my dissertation. Thanks to co-supervisor, Associate Professor Dr. Hashim Hizam for his useful comments and advices in this project.

I would also like to acknowledge my husband for his moral support and encouragements.

Finally, I am indebted to my lovely parent for their supports and dedications.

Thank you and May Allah reward them all.

I certify that an examination committee met on month/date/year to conduct the final examination of Maryam Mirzaei on her Master of Science thesis entitled "Fault Location Determination in Unbalanced Radial Distribution Networks using Generalised Regression Neural Network (GRNN) " in accordance with Universiti Putra Malaysia (higher degree) act 1981 and Universiti Pertanian Malaysia (higher degree) regulations 1981. The committee recommends that the candidate be awarded the relevant degree.

Members of the examination committee are as follows:

Dr. Mohd. Nizar b. Hamidon Faculty of Engineering Universiti Putra Malaysia (Chairman)

Assoc. Prof. Dr. Chandima Gomes Faculty of Engineering Universiti Putra Malaysia (Internal Examiner)

Dr. Wan Fatinhamamah bt. Wan Ahmad

Faculty of Engineering Universiti Putra Malaysia (Internal Examiner)

Professor Dr. Hjh. Azah Mohamed

Faculty of Electrical Engineering Universiti Kebangsaan Malaysia (External Examiner)

BUJANG KIM HUAT, PHD

Professor and Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date:

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Mohd. Zainal Abidin Ab Kadir, PhD

Associate Professor Faculty of Engineering Universiti Putra Malaysia (Chairman)

Hashim Hizam, PhD

Associate Professor Faculty of Engineering Universiti Putra Malaysia (Member)

HASANAH MOHD GHAZALI, PhD

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date: 9 June 2011

DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently submitted for any other degree at Universiti Putra Malaysia or at any other institutions.

MARYAM MIRZAEI

Date: 22 February 2011

TABLE OF CONTENTS

	Page
ABSTRACT	i
ABSTRAK	111
ACKNOWLEDGEMENT	V
APPROVAL	vi
DECLARATION	viii
LIST OF TABLES	xii
LIST OF FIGURES	XV
LIST OF ABBREVATIONS	xviii
CHAPTER	

CHAPTER

1	INTRO	DUCTION	1
1	1.1	Overview	1
	1.1	Problem Statement	3
	1.2	Objectives	4
	1.4	Scope of Study	4
	1.4	Thesis Outlines	5
2		RATURE REVIEW	7
	2.1	Introduction	7
	2.2	Electric Power Distribution Systems	8
	2.3	Distribution System Faults	10
	2.4	Types of Fault Location Methods	12
		2.4.1 Impedance and Other Fundamental Frequency	
		Component Based Methods	13
		2.4.2 High Frequency Components and Travelling	
		Wave Based Methods	15
		2.4.3 Knowledge-Based Method	18
	2.5	Artificial Neural Network as a Selected Method	23
	2.6	Neural Networks	25
		2.6.1 Biological Neural Networks	26
		2.6.2 Artificial Neural Networks	27
		2.6.3 Neuron Model	28
		2.6.4 Learning Algorithm in Artificial Neural Network	31
		2.6.5 Network Architecture	31
	2.7	Identification of ANN Model	33
	2.8	Summary	37
3	METH	IODOLOGY	39
5	3.1	Introduction	39
	3.2	Three-Phase Distribution System Modelling	42
	5.2	3.2.1 Modelling the IEEE 13 Node Test Feeder	43
		3.2.2 Overhead and Underground Line Models	45
		3.2.3 Load Models	49
		J.2.J LUAU WICHCIS	47

	3.2.4 Power Transformer Modelling	52
3.3	Three Phase Load Flow Analysis	52
3.4	Three Phase Short Circuit Analysis	55
3.5	Fault Location Algorithm	57
3.6	Types of Faults	60
3.7	Pre-processing of the Network Inputs and Targets	62
3.8	Classification Techniques in Fault Location Problem	63
	3.8.1 The Feed-forward Neural Network (FFNN)	64
	3.8.2 Radial Basis Function Network (RBFN)	66
	3.8.3 Probabilistic Neural Network (PNN) as a Fault	
	Classifier	67
	3.8.4 The PNN Architecture	68
3.9	Generalised Regression Neural Network (GRNN) as a	
	Fault Locator	70
	3.9.1 The GRNN Architecture	72
3.10	Proposed Scheme	75
3.11	Summary	78
RES	ULTS and DISCUSSION	79
4.1	Introduction	79
4.2	Result of Load Flow for 13 Bus Test Feeder	79
4.3	Result of Short Circuit	81
4.4	Input Vectors and Targets	83
4.5	Result of FFNN as a Fault Classifier	86
4.6	Result of RBFN as a Fault Classifier	89
4.7	Result of PNN as a Fault Classifier	90
4.8	Comparison between Result of PNN, RBFN and FFNN	94
4.9	Result of FFNN as a Fault Locator	96
4.10	Result of RBFN as a Fault Locator	98
4.11	Result of GRNN as a Fault Locator	100
4.12	Comparison between Results of GRNN, RBFN and	
	FFNN	103
4.13	Result of 76-Bus Distribution System	105
4.14	Comparison of Results after Input Validation for PNN	
	and FFNN, RBFN Models of the 76-Bus System as	
	fault classifiers	107
4.15	Comparison of Results After Input Validation for	
	GRNN, FFNN and RBFN Models of the 76-Bus	
	System as fault locators	110
4.16	Summary	119
CON	ICLUSION and FUTURE WORKS	121
5.1	Conclusion	121
5.2	Future Research	121
5.2	i uture Researen	122
REF	ERENCES	124
APP	ENDIX A	133

4

5

APPENDIX B	139
APPENDIX C	149
APPENDIX D	152
BIODATA OF STUDENT	161

