DESIGN OF ARTIFICIAL INTELLIGENCE-BASED ELECTRONIC MALAY LANGUAGE LEARNING TOOL FOR VISUALLY IMPAIRED CHILDREN

YEHOH SING HSIA

FK 2011 138
DESIGN OF ARTIFICIAL INTELLIGENCE-BASED ELECTRONIC MALAY LANGUAGE LEARNING TOOL FOR VISUALLY IMPAIRED CHILDREN

By

YEOH SING HSIA

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirement for the Degree of Master Science

December 2011
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the Degree of Master Science

DESIGN OF ARTIFICIAL INTELLIGENCE-BASED ELECTRONIC MALAY LANGUAGE LEARNING TOOL FOR VISUALLY IMPAIRED CHILDREN

By

YEHOH SING HSIA

December 2011

Chairman: Professor Ishak bin Aris, PhD
Faculty: Engineering

For many years, the application of assistive technologies for the disabled has been given little attention, despite the undoubted need for more. Disable people especially for those who are blind, always face a lot of difficulties in their learning process. Personal teachers have to guide them patiently with the aid of limited learning devices. The advancement of technology in twenty-first century should provide more design of great learning devices. However in developing countries like Malaysia, there are limited locally made assistive devices to suit the language used and the local culture. There are more than 20,000 people who are categorized under vision disability in Malaysia. The percentage of visually impaired people who master Malay language, as the national language in Malaysia, is low.

The main purpose for this research is to develop a Malay language learning tool for blind children. This research work involves the implementation of Hamming Distance
Technique (HDT) and simple Genetic Algorithm (GA) in spell checking and word suggestion mechanism. Besides spell checking, this system has a complete, step by step learning method with audio output. The learning contents are built using MATLAB. Moreover, it is linked with a tactile feedback module that is built using C language and microcontroller, to provide Braille display functionality. Also, this research involves developing a database for 10,000 Malay root words. This number of words is more than enough for kindergarten level. The simulation results indicate that the algorithm is able to suggest a word, based on the design settings. It depends on the size of word. The longest word, which is 6 ALP, has the slowest word suggestion time, at around 10 seconds for the worst case scenario. The feedback from two surveys is positive with 100% satisfaction on the overall performance of the prototype.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

REKA CIPTA ALAT ELEKTRONIK PINTAR DALAM PEMBELAJARAN BAHASA MELAYU UNTUK KANAK-KANAK BERMASALAH PENGLIHATAN

Oleh

YEHOH SING HSIA

Disember 2011

Pengerusi: Profesor Ishak bin Aris, PhD

Fakulti: Kejuruteraan

ACKNOWLEDGEMENTS

I would like to thank my supervisor, Professor Ishak bin Aris, for guiding me patiently throughout the research period. He has given me a lot of useful ideas and comments which help me to manage to complete the research. Besides that, I am also grateful to my project co-supervisor Dr. Fakhrul Zaman for his invaluable encouragement in the development of this project.

In addition, thanks to my lovely family members for their encouragement and support throughout my research work. And a heartfelt gratitude to all my friends who has given me endless helps.

Special thanks to MOSTI for providing National Science Fellowship to support my expenses during my master program. A word of thanks to Pn. Rosnah Alimuda for her contribution of idea and follow-up of the project development. Finally, sincere thanks to Pemulihan Dalam Komuniti (PDK) Permata and Jalan Batu special education primary school which gave permissions for us to conduct the surveys.
I certify that a Thesis Examination Committee has met on 28 December 2011 to conduct the final examination of Yeoh Sing Hsia on his (or her) thesis entitled "Design of Artificial Intelligence-based Electronic Malay Language Learning Tool for Visually Impaired Children" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Degree of Master Science.

Members of the Thesis Examination Committee were as follows:

Izhal bin Abdul Halin, PhD
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Nasri bin Sulaiman, PhD
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

Suhaidi bin Shafie, PhD
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

Umi Kalthum binti Ngah, PhD
Associate Professor
Faculty of Engineering
Universiti Sains Malaysia
Malaysia
(External Examiner)

SEOW HENG FONG, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master Science. The members of Supervisory Committee were as follows:

Ishak bin Aris, PhD
Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Fakhrul Zaman bin Rokhani, PhD
Senior Lecturer
Faculty of Engineering
Universiti Putra Malaysia
(Member)

BUJANG BIN KIMHUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or other institutions.

YEOH SING HSIA

Date: 28 December 2011
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iv</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vi</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xvii</td>
</tr>
<tr>
<td>CHAPTER</td>
<td></td>
</tr>
<tr>
<td>1 INTRODUCTION</td>
<td></td>
</tr>
<tr>
<td>1.1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Problem Statement</td>
<td>3</td>
</tr>
<tr>
<td>1.3 Objectives of the Research</td>
<td>6</td>
</tr>
<tr>
<td>1.4 Research Scope</td>
<td>7</td>
</tr>
<tr>
<td>1.5 Overview of the Project</td>
<td>8</td>
</tr>
<tr>
<td>1.6 Thesis Layout</td>
<td>9</td>
</tr>
<tr>
<td>2 LITERATURE REVIEW</td>
<td></td>
</tr>
<tr>
<td>2.1 Introduction to Artificial Intelligence (AI)</td>
<td>10</td>
</tr>
<tr>
<td>2.2 Development in Genetic Algorithms</td>
<td>11</td>
</tr>
<tr>
<td>2.2.1 Biomedical</td>
<td>12</td>
</tr>
<tr>
<td>2.2.2 Information Technology and Engineering</td>
<td>12</td>
</tr>
<tr>
<td>2.2.3 Data Mining</td>
<td>13</td>
</tr>
<tr>
<td>2.2.4 Scheduling</td>
<td>13</td>
</tr>
<tr>
<td>2.3 Single Objective Genetic Algorithm</td>
<td>14</td>
</tr>
<tr>
<td>2.3.1 Initial Population Generation</td>
<td>16</td>
</tr>
<tr>
<td>2.3.2 Fitness Function</td>
<td>16</td>
</tr>
<tr>
<td>2.3.3 The Selection Operator</td>
<td>17</td>
</tr>
<tr>
<td>2.3.4 Crossover</td>
<td>18</td>
</tr>
<tr>
<td>2.3.5 Mutation</td>
<td>19</td>
</tr>
<tr>
<td>2.4 Natural Language Processing (NLP)</td>
<td>20</td>
</tr>
<tr>
<td>2.4.1 GA in NLP</td>
<td>21</td>
</tr>
<tr>
<td>2.4.2 Spelling Checker</td>
<td>23</td>
</tr>
<tr>
<td>2.4.3 Development in Spelling Checker</td>
<td>24</td>
</tr>
<tr>
<td>2.5 Assistive Technology for Disabled People</td>
<td>27</td>
</tr>
</tbody>
</table>
2.6 Pedagogies for Visually Impaired Children 29
2.7 Malay Language 31
 2.7.1 Phonemes 31
 2.7.2 Morphology 32
 2.7.3 Malay Language based Research 33
2.8 Summary of Literature Review 36

3 METHODOLOGY
3.1 Introduction 37
3.2 Design Overview 37
3.3 Genetic Algorithm Optimization Method 40
 3.3.1 Genetic Operation 42
 3.3.2 Generation of Initial Population 45
 3.3.3 Selection Process 46
 3.3.4 Crossover Operation 46
 3.3.5 Mutation Operation 48
 3.3.6 Fitness Function 49
 3.3.7 Summary of GA Parameters 50
3.4 MATLAB Software 51
 3.4.1 Genetic Algorithm in MATLAB 51
 3.4.2 Hamming Distance Technique in MATLAB 53
 3.4.3 Opening Audio File in MATLAB 54
 3.4.4 Serial Interface in MATLAB 56
 3.4.5 Graphical User Interface in MATLAB 59
3.5 Hardware Design 64
 3.5.1 System Overview 64
 3.5.2 Design Architecture 65
 3.5.3 Schematic 67
 3.5.4 Software Design for Microcontroller 69
 3.5.5 Mechanical Design 70
3.6 Summary of Methodology 74

4 RESULTS AND DISCUSSION
4.1 Introduction 76
4.2 Display of Learning Content 76
4.3 Efficiency of GA Control Parameters 82
 4.3.1 Effect of Number of Population Generation 83
 4.3.2 Effect of Population Size 85
 4.3.3 Effect of Crossover Rate 88
 4.3.4 Effect of Mutation Rate 90
4.3.5 Effect of Filtering System 90

4.4 Effect of Algorithms 92
4.4.1 The Need for GA 92
4.4.2 The Need for HDT 93

4.5 Database Analysis 95

4.6 Hardware Result 98
4.6.1 Electrical Aspect 99
4.6.2 Electronic Aspect 99
4.6.3 Mechanical Aspect 101

4.7 Products Comparison 102

4.8 Prototype Testing and Surveys 103

4.9 Summary of Results and Discussion 106

5 CONCLUSIONS
5.1 Conclusions 108
5.2 Recommendations for Future Work 109
5.3 Project Contribution 110

REFERENCES 111
APPENDICES 119
BIODATA OF STUDENT 139
LIST OF PUBLICATIONS 140