UNIVERSITI PUTRA MALAYSIA

CONTROL OF GRAIN DRYING PROCESS USING SELF-TUNING QUANTITATIVE FEEDBACK THEORY

HASMAH MANSOR

FK 2011 128
CONTROL OF GRAIN DRYING PROCESS USING SELF-TUNING QUANTITATIVE FEEDBACK THEORY

By

HASMAH MANSOR

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

October 2011
DEDICATION

To my beloved husband,
Muhammad Helmy

and my children,
Muhammad Fareezy Fahmy
Nur Farisya Alyssa
Nurisya Ezryn
Muhammad Rizq Aiman
CONTROL OF GRAIN DRYING PROCESS USING SELF-TUNING QUANTITATIVE FEEDBACK THEORY

By

HASMAH MANSOR

October 2011

Chairman: Samsul Bahari Mohd Noor, PhD
Faculty: Engineering

Grain drying process is very important in post-harvest technology. Drying is needed to reduce the moisture content of grains fresh from the fields to a safe level for storage. The challenges in grain drying system nowadays are to produce good quality of grains with minimal production cost and support for the green technology. There are not many automatic controllers applied to the commercial grain dryers and most existing grain dryer systems suffer unsatisfactory performance such as lack of accuracy, robustness, energy efficiency and grain quality. The main reason towards this problem is the inaccuracy of the grain dryer mathematical models which is derived based on assumptions and estimations used in designing the control system.
The performance of grain drying systems needs to be improved; therefore, this topic is proposed. A laboratory scale conveyor belt type grain dryer was specially fabricated for this study. System identification technique which utilised experimental input/output data was used to model the grain dryer plant. The obtained grain dryer process model in the form of low order transfer function was validated and the performance was compared with autoregressive with exogenous terms (ARX) model. Test result showed the process model has better modelling performance than ARX model.

The robust QFT-based controller was designed based on the obtained grain dryer process model. The controller design was done in two stages. In the first stage, the QFT-based controller was designed offline to meet the robust performance specifications and disturbance attenuation despite of uncertainty. Two ranges of uncertainty were considered; small range and wide range uncertainty. The performance of offline QFT-based controller was compared with PID controller tuned by Ziegler Nichols and Partial Swarm Optimisation (PSO). Tests results showed the superiority of QFT-based controller over PID controller tuned by both methods in terms of faster settling time, smaller percentage of overshoot and smaller control effort. However, the performance of QFT-based controller deteriorated when the parameters variation exceeded the defined uncertainty range. Therefore, in the second stage of design, online QFT-based self-tuning controller was proposed.

The QFT constraints were integrated into the self-tuning algorithm to ensure the robustness of the controller. Superiority of the online self-tuning controller was proven when the tests results showed that the online controller could adapt to larger uncertainty
range than offline controller. Better responses were produced by the online controller especially when larger parameters variation acts on the plant. The percentage of overshoot was reduced from 25% to 0.929%, and settling time from 96 to 36.5 samples.

The QFT based controller design by standard procedure successfully meets the predefined specifications. However, due to tighter specifications, online QFT-based self-tuning controller improves the transient response for larger uncertainty range and at the same time improves the QFT design method where the controller's design is done online.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

KAVALAN UNTUK SISTEM PENGERING BIJIRIN MENGGUNAKAN TEKNIK TEORI SUAP BALIK KUANTITATIF PENALAN-SENDIRI

Oleh

HASMAH MANSOR
Oktober 2011

Pengerusi : Samsul Bahari Mohd Noor, PhD
Fakulti : Kejuruteraan

Prosess pengeringan bijirin sangat penting di dalam teknologi selepas penuaan. Pengeringan diperlukan untuk mengurangkan kandungan lembapan di dalam bijirin yang baru dituai ke aras yang selamat untuk disimpan. Kini, cabaran yang dihadapi oleh sistem pengeringan bijirin adalah untuk menghasilkan bijirin yang berkualiti tinggi dengan kos produksi yang minima dan menyokong teknologi hijau. Terdapat tidak banyak aplikasi alat kawalan automatik pada alat pengering padi komersial dan kebanyakan sistem pengeringan bijirin yang sedia ada mengalami prestasi yang kurang memuaskan seperti kekurang dari segi ketepatan, ketegaran, kecekapan tenaga dan kualiti bijirin. Sebab utama masalah ini adalah ketidakaktepatan model matematik alat
pengering bijirin yang diterbitkan berdasarkan andaian dan aggaran kemudian digunakan bagi mereka sistem kawalan.

Alat kawalan tegar berteraskan teknik QFT telah direka berdasarkan model pengering bijirin yang telah diperolehi. Di peringkat pertama, alat kawalan berteraskan QFT direka secara luar talian untuk menepati spesifikasi prestasi tegar dan pengecilan gangguan walaupun terdapat ketidakpastian. Dua julat ketidakpastian telah diambil kira; ketidakpastian julat kecil dan ketidakpastian julat besar. Prestasi alat kawalan berteraskan QFT luar talian telah dibandingkan bersama alat kawalan PID yang dilaraskan menggunakan Ziegler Nichols dan Particle Swarm Optimisation (PSO). Keputusan ujian menunjukkan kelebihan alat kawalan berteraskan QFT berbanding alat kawalan PID yang dilaraskan menggunakan kedua-dua cara dari segi masa enapan yang lebih cepat, peratusan terlajak yang lebih kecil dan usaha kawalan yang lebih kecil. Namun, prestasi alat kawalan berteraskan QFT merosot apabila variasi pembolehubah melebihi julat
ketidakpastian yang ditetapkan. Oleh itu, di dalam rekaan peringkat kedua, alat kawalan penalaan-sendiri berteraskan QFT dalam talian telah dicadangkan.

Kekangan QFT telah diintegrasikan ke dalam algoritme laras-sendiri untuk memastikan tahap ketegaran alat kawalan. Kelebihan alat kawalan penalaan-sendiri berteraskan QFT dalam talian telah dibuktikan apabila keputusan ujian menunjukkan alat kawalan ini boleh menyesuaikan diri kepada julat ketidakpastian yang lebih besar berbanding alat kawalan luar talian. Gerak-balas yang lebih baik telah dihasilkan oleh alat kawalan penalaan-sendiri berteraskan QFT dalam talian terutamanya apabila 50% variasi pembolehubah bertindak ke atas mesin. Peratusan terlajak system pengeringan padi telah dikurangkan dari 25% ke 0.929%, masa enapan dari 96 to 36.5 pensempelan.

Alat kawalan QFT yang direka menggunakan prosedur standard berjaya menepati spesifikasi yang diberikan. Namun, disebabkan oleh spesifikasi yang lebih ketat, alat kawalan penalaan-sendiri berteraskan QFT dalam talian memperbaiki gerak-balas fana untuk julat ketidakpastian yang lebih besar, dan dalam masa yang sama memperbaiki cara rekaan QFT di mana rekaan alat kawalan dibuat secara dalam talian.

viii
ACKNOWLEDGEMENTS

Alhamdulillah to Allah the almighty for His permission that I could complete this thesis.

First of all, I would like to express my thanks and gratitude to my dedicated supervisor, Associate Professor Dr Samsul Bahari Mohd Noor who provides me great help during this research. His perspective knowledge in engineering, advice and guidance throughout the research are really appreciated. Without his professional supervision, this research and thesis might not be completed.

I also would like to thank my co-supervisors, Dr Raja Mohd. Kamil Raja Ahmad and Dr Farah Saleena Taip who always give their hands for help whenever needed. Special appreciation to Dr Ab. Rahim Muda, a former Senior Researcher Officer in Malaysian Agricultural Crops Research Centre (MARDI) who delivers his knowledge about paddy crop and give guidance during experimental work.

Last but not least, my greatest appreciation to my family and friends especially my husband who always gives me support and courage to face all the hurdles being a PhD student.

Wassalam…
I certify that a Thesis Examination Committee has met on 19 October 2011 to conduct the final examination of Hasmah Mansor on her thesis entitled “Control of Grain Drying Process Using Self-Tuning Quantitative Feedback Theory” in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the relevant Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Wan Ishak Wan Ismail, PhD
Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Mohammad Hamiruce Marhaban, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

Syafiie, PhD
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

G. Halikias, PhD
School of Engineering and Mathematical Sciences
City University
United Kingdom
(External Examiner)

SEOW HENG FONG, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 25 January 2012
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Samsul Bahari Mohd Noor, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Raja Mohd Kamil Raja Ahmad, PhD
Senior Lecturer
Faculty of Engineering
Universiti Putra Malaysia
(Member)

Farah Saleena Taip, PhD
Senior Lecturer
Faculty of Engineering
Universiti Putra Malaysia
(Member)

BUJANG KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I declare that the thesis is my original work except for quotations and citations, which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

HASMAH MANSOR

Date: 19 October 2011
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>ix</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>x</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xvii</td>
</tr>
</tbody>
</table>

CHAPTER

1. **INTRODUCTION**
 1.1 Background
 1.2 Problem Statement
 1.3 Research Objectives
 1.4 Research Contributions
 1.5 Scope of the Thesis
 1.6 Thesis Organisation

2. **LITERATURE REVIEW**
 2.1 Introduction
 2.2 Types of Grain Dryers
 2.3 Modelling of Grain Drying Process
 2.4 Control of Grain Dryers
 2.4.1 Control of Cross-flow Dryers
 2.4.2 Control of Other Types of Dryers
 2.5 Quantitative Feedback Theory
 2.6 Applications of QFT
 2.7 Improvement of QFT design
 2.8 Self-tuning Adaptive Control
 2.9 Summary

3. **METHODOLOGY**
 3.1 Introduction
 3.2 Description of Conveyor Belt Type Grain Dryer
 3.3 Experiment Setup of Conveyor Belt Type Grain Dryer
 3.3.1 Re-wetting Process of Grain
 3.3.2 Data Collections Experiment
 3.4 Modelling of Grain Drying System
3.4.1 Process Model 61
3.4.2 Model Validation 64
3.4.3 Comparisons with Other Type of Model: Linear Parametric Model 66

3.5 QFT-based Controller Design 69
3.5.1 Basic Theory of QFT Technique 70
3.5.2 Templates Generation 73
3.5.3 QFT bounds 73
3.5.4 Controller Design 75
3.5.5 Pre-filter Design 76

3.6 QFT-based Controller Design for a Grain Dryer Plant 76
3.6.1 Plant Model and Uncertainties 76
3.6.2 Desired Performance Specifications 79
3.6.3 QFT bounds for Grain Dryer Plant 80
3.6.4 Loop Shaping or Controller Design for Grain Dryer plant 84
3.6.5 Analysis of QFT design for a Grain Dryer Plant 85
3.6.6 Wide Range of Parameter Uncertainty 89

3.7 Self-tuning Control System 94
3.7.1 Online Identification Methods 95
3.7.2 Principle of the Recursive Least Square (RLS) Method 96
3.7.3 Pole Placement Algebraic Method 100
3.7.4 Pole Placement with QFT Constraints 103

3.8 Online QFT-based Self-tuning Grain Drying System 104
3.8.1 The Plant 107
3.8.2 Model identification 109
3.8.3 The Controller 110

3.9 Summary 112

4 RESULTS AND DISCUSSIONS 115
4.1 Introduction 115
4.2 Input / Output Disturbance and Parameter Variation – The Relation to the Grain Dryer Plant 116
4.3 Open-loop Test 117
4.4 Performance Tests Based on Small Range of Parameter Variation QFT Design
4.4.1 Test 1 – Reduction of moisture content from 17% to 14% w.b 120
4.4.2 Test 2 - Input Disturbance 126
4.4.3 Test 3 - Output disturbance 130
4.4.4 Test 4 – Uncertainty Test 133
4.5 Performance Tests Based on Wide Range of Parameter Variation QFT Design
4.5.1 Test 1 - Reduction of moisture content from 17% to 14% w.b 135
4.5.2 Test 2 – Input Disturbance 136
4.5.3 Test 3 – Output Disturbance 138
4.5.4 Test 4 – Uncertainty Test 142
4.6 Online QFT-based Self-tuning Controller 143
4.6.1 Test 1 – Adaptation Test 144
4.6.2 Test 2 – Input Disturbance 147
4.6.3 Test 3 – Output Disturbance 150
4.6.4 Test 4 – Uncertainty Test 153
4.6.5 Test 5 – White Noise Test 157
4.7 Comparisons between Controllers 160
4.7.1 Performance of Offline QFT-based Versus PID Controllers 160
4.7.2 Performance of Offline QFT-based Controller versus Online QFT-based Self-tuning Controller 168
4.8 General Comparison with Other Types of Controller 176
4.8.1 Fuzzy Logic Controller versus Standard QFT Controller 177
4.8.2 Offline/Online QFT-based Controller versus Other Types of Controller 180
4.9 Summary 182

5 CONCLUSION AND RECOMMENDATIONS 185
5.1 Introduction 185
5.2 Conclusion 185
5.3 Recommended Future Work 188

REFERENCES 189
APPENDIX A 197
APPENDIX B 198
BIODATA OF STUDENT 207
LIST OF PUBLICATIONS 208