INAUGURAL LECTURE

PROF. DR. SUNDARARAJAN THILAGAR

DEVELOPMENT AND INNOVATION IN THE FRACTURE MANAGEMENT OF ANIMALS

31 March 2006

DEWAN TAKLIMAT
TINGKAT 1, BANGUNAN PENTADBIRAN
UNIVERSITI PUTRA MALAYSIA
Prof. Dr. Sundararajan Thilagar was born in an agricultural family on 14th October 1954 in a village called Alangulam near Thiruppuvanam town of Sivagangai District (Tamilnadu-India). He obtained his B.V.Sc. and M.V.Sc. (Surgery) degrees from the Tamilnadu Agricultural University (India) in 1978 and 1983 respectively. He took his doctorate from the Tamil Nadu Veterinary and Animal Sciences University (India) in the year 1993.

Prof. Dr. S. Thilagar joined as Junior Manager (Veterinary) in the Tamilnadu Dairy Development Corporation, Ooty. Later in 1980, he joined his Almamater as Research associate in the Department of Clinics, Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University. As faculty member he worked in various capacities. He became Professor of Surgery in 1994 and served as Head of the Department of Clinics, Veterinary College and Research Institute, Namakkal and University Veterinary Teaching Hospital, Madhavaram Chennai. He was instrumental in developing the infrastructural facilities in these two hospitals. Later he worked as Professor and Head, Department of Clinics, Madras Veterinary College Chennai, India from 1999-2003. Prof. Dr. S. Thilagar is currently working as Professor in the Faculty of Veterinary Medicine, UPM since August 2003.

Prof. Dr. S. Thilagar has worked in many research schemes particularly in a scheme on Embryo transfer in Goats, funded by the Govt. of Tamilnadu (India) and successfully produced first embryo transferred kids in 1989 the first of its kind in South India. His interest towards need based research in the field of Veterinary Sciences particularly in Veterinary surgery was the prime factor to obtain grants from different external funding agencies like ICAR, Ministry of Rural Development, Govt. of India for many research projects.

Prof. Dr. S. Thilagar had shown interest in the field of diagnosis of spinal injury since 1980 with focus on spinal injury patients and their rehabilitation. The unique opportunities enabled him to be associated in developing an ambulatory cart for a paralyzed cat which was recognized for publication in U.K. and India.

He has written a chapter in one book, co-authored 4 teaching manuals, and has authored 70 research and clinical papers both in national and international journals. Various authors in reputed journals have cited his papers. He has guided 3 M.V.Sc students, 1 MVM and two Ph.D (TANUVAS). Currently guiding one Ph.D student.

Prof. Dr. S. Thilagar is a recipient of the Maruthamuthu Mariyayee Best Teacher Award in 1995 from TANUVAS. For his outstanding Research Contribution in the field of contrast radiology (Myelography) and Rehabilitation Techniques for Handicapped and Veterinary Patients with Spinal Lesions in Veterinary Sciences, the Tamilnadu State Council for Science and Technology awarded TAMILNADU SCIENTIST AWARD (TANSA) for the year 1998 in the field of Veterinary Sciences and also later recognized as Fellow ISVS by the Indian society for veterinary surgery in 2004.
DEVELOPMENT AND INNOVATION IN THE FRACTURE MANAGEMENT OF ANIMALS

ABSTRACT

In the early 1920’s, veterinary orthopedic cases were just managed with the help of external coaptation and external fixation devices. In many places conventionally trained persons and veterinarians carried out this practice. Subsequently after a better understanding of fracture biomechanism many internal fixation techniques, have been adopted in animals, providing good success rate of the fracture repair in veterinary practice. After the formation of AO/ASIF, fracture repair has branched out into many channels particularly in dogs, cats, horses and exotic pets. The availability of implants also facilitated the increasing demands from the animal owner to take these techniques.

The topic is discussed from the history of fracture repair, the status of its use in animals, classification of fracture, biomechanism of fracture, factors responsible for bone healing fracture, enhancing factor for fracture healing and different fixation techniques (both external and internal).
HISTORY OF VETERINARY ORTHOPEDICS

Earlier to 1920's orthopedic patients were mostly only fracture cases managed with plaster of paris, tripolith dressing, pitch and corn starch paste in small animals and Tar pitch in large animals. The first advancement in veterinary orthopedics came in 1920 when fluoroscopy and radiography of the skeleton was introduced. Each of these substances, were mixed with water and made into a paste that was used to saturate bandages of gauze, muslin and cheesecloth. The bandages were then wrapped over the cotton padding and supported with splints that were from material like wood tongue depressors, wire, gauze, cardboard, flexible wooden strips and bamboo.

In spite of improved traction and splinting techniques, the fluoroscope and radiographs revealed complicated fractures still resisted complete reduction and healed in a mal-aligned fashion. More sophisticated and adoptable methods were sought to achieve satisfactory results. Surgical intervention to the site of the injury was a feasible approach but the complication of sepsis was a common problem. Asepsis was achieved after the discovery of antibiotics against infection and the importance of sterilization in 1928 was the second breakthrough in the field of veterinary surgery including orthopedic surgery.

In 1940, a third breakthrough occurred that added confidence to successful fracture repair due to additional antibiotics. From 1940-1960 many fractured bones were stabilized with metallic materials such as piano wire, bicycle spokes wire, stainless steel rod and tantalum and processed animal tissues such as bovine bone and tendon were tried in the medullary cavity. The use of metallic and animal materials, encouraging as it was, brought new problems, primarily associated with tissue reaction, metal oxidation, and metal fatigue. In the mid 1960 bone plating become the successful technique after introduction of AO system of implant from Switzerland. Since then many types of implants were used in the field of veterinary orthopedics and its application is slowly spreading to pet animals, food animal, exotic pets and equine.

Veterinary orthopedics, which began as fracture repair enlarged into orthopedic disease of genetic origin, biomechanics and other many disciplines. The future should continue to expand the horizons of orthopedics. The humble beginnings can be traced to three major steps made by radiography, sterile technique and antibiotics. Further development in the field of orthopedics is mainly due to the establishment of AO.

STATUS OF FRACTURE REPAIR IN ANIMAL SPECIES

Dogs and cats: Fractures in dogs and cats are easy to repair hence many internal and external fixations are primarily adopted in dogs and cats and applied in practice. Pet owners are demanding best suitable techniques in recent days, thus providing a strong platform for the field of veterinary orthopedics to grow further. Many innovative methods are feasible in small animals.
Equines: Equine fractures are more difficult to repair and heal more slowly. As recently as 30 years ago, most horses with severe fractures were euthanized or, at best, retired, largely because you couldn’t ask a horse to stay in bed or use crutches to keep his weight off of a fracture while it healed. Today, internal fixation, using screws and bone plates, permits a horse to stand on a broken leg while it heals, often making previously life-threatening fractures treatable. Additionally, new anesthetics and methods of bringing a horse out of anesthesia greatly reduce the probability of developing new fractures and re-fractures during recovery. However, it’s still an anxious time when a horse whose fracture has just been repaired gets to his feet.

Due to increasing competitive intensity, fractured legs in performance horses are more common than ever. The chance of a successful repair often depends largely on how the horse is handled before he gets to the operating table. If a horse is forced to walk on the broken bone or if he’s transported to the hospital without a proper splint, what began, as a relatively simple fracture might be irreparable.

Farm Animals: In the past simple forms of orthopedic treatments have been used to treat long bone fractures in farm animals. In the last decade three major factors have advanced ruminant orthopedics better understanding of bone physiology and biomechanics, related fracture repair, the availability of implants and equipments to treat animals. This has increased the scope of mechanical support by internal fixation techniques in appropriate situation. More than that the economic value and potential of skeletal ruminants have increased due to advances in assisted reproduction technology and clients have demanded that conditions once thought irreparable be treated.

Exotic Pets: Exotic pets represent a very heterogeneous group of species involving mammals, birds and reptiles. The increasing numbers have resulted in many veterinarians to specialize on their treatment in traumatic injury. In smaller patients (less than 100gm) bandages, splints may be the only method for fracture repair method. Surgical methods are frequently used in larger patients weighing more than 100gms.

Bone anatomy: The structures like cortex, medulla, and the anatomical region called diaphysis, metaphysis, physis and epiphysis are very important structures thus plays vital part in fracture repair management and as well as choosing right fixation techniques. Cortex is the outer layer of the bone which is thin in food animals compare to other animals. Animals having thick cortex is ideal patients for internal fixation techniques. Physis is part to be considered in immature animals fracture repair to avoid any further damage to growth plate thus may affect the growth of an animal. All these information were concluded from much innovative research study.
Classification of fractures: Fractures in animals are classified and described based on the communication to the skin and bone, shape of the fracture lines, anatomical location of the fracture and severity. This classification is self explanatory to match the suitable techniques of fixation, which is suited for the cases. The genesis of the classification is also a result of many fracture repair techniques applied in animals.
Incidence of fracture:

In dogs: Regarding the incidences of bones involved, fracture of radius and ulna was more prevalent (31.9%) followed by that of tibia and fibula (31.9%) and femur (14.7%) Thilagar et al., (1988) (Table1). Similar pattern was recorded by Archibald, (1974).

In Food animal (Ruminant) Metacarpus fractures are the most common ones seen in ruminants. Metacarpus and metatarsus fractures comprise 50% of all. The incidence of long bone fractures were metatarsus (28.2%), metacarpus (26%) and tibia (14.6%) Thilagar et al., 2003b) (Table 2) Similar pattern of incidence was also observed by Ferguson, (1982); Dass et al., (1985) and Aithal,(1999) Higher incidence of fractures in distal bones of the limbs is probably attributed to less soft tissue coverage and vulnerability to fracture during automobile accidents.

In horse: Distal limb is the most commonly affected site in all types of race particularly metacarpal and metatarsal bone (Nixen,1986 and Mc Kee,1995)

Principles of fracture fixation: The following principles are important in fracture management and considered to be vital which generated many new innovative methods in fracture repair in animals
• Anatomic reduction of fracture fragments
• Stable fixation
• Preservation of blood supply to the bony fragments and surrounding soft tissues
• Early active pain free mobilization of the muscles and joints
<table>
<thead>
<tr>
<th>Bone involved</th>
<th>Right</th>
<th>Middle third</th>
<th>Upper third</th>
<th>Total</th>
<th>Lower third</th>
<th>Grand total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radius ulna</td>
<td>26(66.6%)</td>
<td>8(18.6%)</td>
<td>3(10.7%)</td>
<td>39(61.0%)</td>
<td>12(30.8%)</td>
<td>64(31.9%)</td>
</tr>
<tr>
<td>Tibia fibula</td>
<td>0</td>
<td>17(45.2%)</td>
<td>5(14.1%)</td>
<td>28(45.2%)</td>
<td>28(45.2%)</td>
<td>34(48%)</td>
</tr>
<tr>
<td>Femur</td>
<td>1(3.3%)</td>
<td>4(11.8%)</td>
<td>4(11.8%)</td>
<td>2(40.0%)</td>
<td>21(53.9%)</td>
<td>32(48%)</td>
</tr>
<tr>
<td>Humerus</td>
<td>0</td>
<td>3(75.0%)</td>
<td>0</td>
<td>3(75.0%)</td>
<td>3(75.0%)</td>
<td>6(2.9%)</td>
</tr>
<tr>
<td>Pelvis</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metacarpal</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metatarsal</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Phalange</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Digits</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 1: Incidence of fractures in dogs (percentage) in relation to bone and locations (S. Thilagar et al. 1988)
<table>
<thead>
<tr>
<th>Bone Involved</th>
<th>Fore Limb</th>
<th>Hind Limb</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humerus</td>
<td>2</td>
<td>19</td>
<td>21</td>
</tr>
<tr>
<td>Radius & Ulna</td>
<td>8</td>
<td>20</td>
<td>28</td>
</tr>
<tr>
<td>Metacarpus</td>
<td>10</td>
<td>24</td>
<td>34</td>
</tr>
<tr>
<td>Femur</td>
<td>5</td>
<td>12</td>
<td>17</td>
</tr>
<tr>
<td>Tibia & Fibula</td>
<td>4</td>
<td>10</td>
<td>14</td>
</tr>
<tr>
<td>Metatarsus</td>
<td>4</td>
<td>13</td>
<td>17</td>
</tr>
<tr>
<td>Total</td>
<td>52</td>
<td>70</td>
<td>122</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Percentage</th>
<th>28.3</th>
<th>38.0</th>
<th>45.2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>30.6</td>
<td>33.7</td>
<td></td>
</tr>
</tbody>
</table>
Types of bone fracture forces:

Tension, compression, bending and rotation are the forces to be considered by the surgeon in choosing an implant for fixation. The primary forces present may vary with the location and extent of the fracture. In many occasions implants must be combined to adequately counter all forces in a specific fracture.

![Types forces that are seen at fracture site](image)

Goals of fracture fixation

The goals of fracture treatment are to encourage quick healing, restore function to affected bone and its associated surrounding soft tissues and obtain a cosmetically acceptable appearance. Before selecting treatment regimens and fixation devices, the criteria of a-Early ambulation and b-Complete return of the affected part to function is focused in fracture repair and its management.

Fracture healing:

Fracture healing varies depending on biological and mechanical factors that influence the sequence of cellular events occurring in fracture healing. The biological factors are fracture location which can be given as in cortical bone, cancellous bone, physeal cartilage and circulation and tissue injury. The mechanical factors mean the stability of bone segments and fragments after fixation device placement. For the sake of simplicity, fracture healing can be divided into three phases as inflammatory phase, reparative phase and remodeling phase.
Inflammatory phase: After fracture the blood vessels at the fracture site get damaged which results in blood clot formation and necrosis of the bone at the fracture site due to osteoclast death. This provokes migration of polymorph nuclear leukocytes followed by macrophages.

Reparative phase: Formation of Collagen, cartilage and bone. New bone is formed at the subperiosteal region and cartilage in other areas

Remodelling phase: Remodelling phase takes place for prolonged time. The cellular module that controls remodeling resorption unit, consisting of osteoclast followed by osteoblast which resorb bone and establish haversian systems

Factors that influence Fracture healing:

Fracture healing can be modified by any endogenous or exogenous factor that has on influence on the metabolic function of cells. The external factors are

a- The degree of local trauma
b- Degree of bone loss
c- The type of bone (cortical and cancellous)
d- Degree of immobilization and Infections
f- Local malignancy in the bone
g- Local pathogenic non malignancy lesions
h- Avascular necrosis
i- Intraarticular fracture-fibrinolysis of synovial fluid

New Innovation in Bone healing: Delayed union and Non-union are the complication in cases of interruption in the healing process. Einhorn, (1995) observed that 10% of the fracture would necessitate further surgical procedure because of non-healing and bone defect. Management of such bone defect by Autologus bone cancellous bone graft replaced by alternative treatments by physical or biological methods for the past 35 years.

Two approaches are being practiced with regards to enhancing bone healing. The *physical strategy* includes the use of mechanical stimulation, electromagnetic fields, and low intensity ultrasound.

The *biological approach* involves the use of *osteoconductive biomaterials*, *osteoinductive biomaterials* comprising a combination of growth regulatory molecules with carriers and *osteogenic biomaterials* made of scaffold seeded with osteocompetent cells. (i) The osteoconductive materials are calcium based ceramics-hydroxyapatite, tricalcium phosphate, bioactive glasses and natural coral exoskeleton derived from marine reefs-Calcium carbonate. These materials are found to be unsuitable for large defects of bone in clinical scenario. (ii) Osteoinductive materials growth factors which stimulate tissue repair which originate from the blood clot and bone. Platelet derived growth factors
(PDGF) and TGF-β are derived from the clot. The growth factors includes BMPs (h-BMP, rh-BMP2, 7), TGF-β, PDGF IGF-II and basic and acidic fibroblast growth factors are released from the bone matrix. These materials are also found to be suitable for large segmental defects of bone in clinical scenario. Carriers; Poly- polyhydroxyester foams(polyglycolic and polylactic acids(PGA-PLA), collagen, alginate or calcium phosphate polymers) are used as carriers for the growth promoters.(iii) Osteogenic materials composed of a scaffold loaded with osteocompetent cells like bone marrow stromal fibroblast(BMSF) are experimented. Delivered using many carriers and useful even for necrotic areas and larger defects. (Hannouche et al., 2001)

Different methods of fixation of fractures

All fixations procedures are classified under these three categories.

I Limb splintage: Limb splintage is a method applying or splinting externally ex: Coaptation splints, casts, modified Thomas splint. First to introduce in veterinary practice still in use especially in food animals and few other animals having stable fracture and transverse fractures without much deviation.

II-Bone splintage: Method in which implants are either inserted in to the medullary canal or applied on the periosteum to stabilize the fracture ends ex: Intramedullary pin, external skeletal fixator, bone plate

III-Compression: This Technique is usually used as additional fixation procedure with other splintage techniques in order to counteract all fracture forces.ex: lag screw, cerclage/inter fragmentary wire, tension band wire and compression plate.

Effect of Fracture forces for different techniques:

The table furnished under(Table3) gives an idea how these techniques counter the different forces of bone fracture .Choosing the techniques is based on the benefits of forces can be nullified not by the facilities available in the hospital. Recent concept is to adopt suitable techniques by considering and giving maximum benefits for the fracture case.
Table 3: Effect of Fracture Forces against Different Fixation Techniques

<table>
<thead>
<tr>
<th>Types of Fixation</th>
<th>Types of Techniques</th>
<th>Forces Neutralize (+)</th>
<th>Forces Not Neutralize (-)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-Limb Splintage</td>
<td>Coaptation devices</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>II-Bone Splintage</td>
<td>Intramedullary pin</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Multiple pin</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Interlock nail</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Bone plate</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>External fixator</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>III-Compression</td>
<td>Compression fixation</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Lag screw, cerclage wire, screws</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>
I-External coaptation: External coaptation in the form of cast/splints is commonly applied in ruminant and equine fracture patients but less used in pet animal fracture cases. External coaptation is used as temporary stabilization and at times for permanent for much long bone fracture in these animals. Casts alone provide minimal axial stability, motion at a fracture site secondary to weight bearing can result in fragment displacement, collapse, prolonged pain and delayed healing (Adams and Fessler, 2000). Due to its less cost, this technique is still practiced in cattle and horses and exotic pets.

Cast material:
- Fiberglass cast, plaster of paris, poly urethane impregnated fiberglass cast Thomas splint cast combination
- PVC splint

The prognosis for long term, pain free survival is excellent for closed fracture and fair for open fractures managed in this manner. The callous forming result of external coaptation is abundant compared to other fixation technique (Deepu Philip Mathew et al., 2005).

![Figure 2. Fracture limb immobilized with PVC splint and callus formed](image)

Half limb cast with transfixation. Transfixation casts or so called walking casts are useful for providing increased axial stability over that provided by external coaptation alone. Transfixation provides a method for transferring weight from the proximal skeleton to the cast thus unloading the bone in the distal portion of the limb. Casts with transfixation are useful for severely comminuted fracture. Positive profile centrally threaded 1/4 inch-diameter pins can be used in ruminants and horses weighing 200kg (Adams and Fessler, 2000) and Fubini and Ducharme, 2004).

External skeletal fixation devices: External skeletal devices can be used in cases of fractures involving all long bones, the mandible, and for bridging joints. Useful particularly in stable, unstable fracture, open fracture, osteotomies and fixation delayed union and nonunion fractures, arthrodesis of certain joints and stabilization of certain joints following ligament or tendon reconstruction. Stability is achieved through the use of multiple percutaneous transcortical pins interconnected externally to form a rigid frame. External fixation is more commonly practiced in ruminants and small animals than in horses,
because pins strong enough to bear a horse's weight often require drilling excessively large holes in the bones.

i-Linear fixator
Type I A one plane unilateral (half-pin splint or unilateral frame). The pins only pass through one skin surface but penetrate both cortices. Minimum of two pins per fragment are used attached to the same connecting bar or some times connected to a second connecting bar by extending the pin which provides more strength.

Type II Bilateral one plane (full pin splintage or bilateral frame). The pins pass through the skin, both cortices and through the skin on the opposite side of the limb. The pins are connected to the bars on each side of the limb (two bars) useful in radius/ulna and tibia. Not useful for femur and humerus due to interference of the medial bar.

Type III bilateral two planes (three dimensional/two-plane bilateral frames). Is on in which it consists of a type II splint (full pin splint) with a half splint applied to the anterior side of the bone at 90 degrees to the full pin splint

ii-Ring fixator (complete/partial): Flexible kirshner wires are used as fixation pins. The rings are connected one to the next by several threaded connecting bars. Ring fixators are a used to construct limb lengthening procedures, corrective osteotomies and multiple piece fractures. In a detailed study on transverse fractures firm bridging with moderate external callus of the defect with cartilaginous cells and adequate vascularization was observed in dogs (Chaudari et.al., 1997) and in ruminants (Olkay et al. 1999 and Deepu Philip Mathews 2005).

![Figure 3. Ring fixator for metacarpal fracture repair in a calf](image)

Internal fixation:

Implant materials: Materials that are implanted for internal fixation should be strong, ductile, wear and fatigue resistant, to maintain fixation, i.e. maintain mechanical
properties during the healing period, be chemically stable for a given period, should not cause allergy and should not affect the infection resistance of the tissue or the organism. Metals, their alloys, polymers, ceramics and composites are the materials used for construction of implants. Since 1900 the metals are used Stainless steel, Titanium Alloy, Cobalt Chrome and Shape memory materials.

In 1926, 18% chromium, 8% nickel stainless steel was introduced into surgical applications. Which was more corrosion resistant for body fluids than the vanadium steel initially introduced by Sherman for his fracture fixation plates. Later in 1926, 18-8SMo stainless steel, which contained a small percentage of molybdenum, to improve the corrosion resistance in salt water, was introduced. This alloy became known as 316 stainless steel. The next alloy to be introduced into orthopedic practice was titanium and its alloys. In 1947 possible applications for titanium surgical implants were considered. Titanium's lightness and good mechanical and chemical properties are salient features for implant applications. Bone plates can also be fabricated using shape memory alloys, in particular nickel titanium. Using a bone plate made out of NiTi surgeons follow the same procedure as is used with conventional bone plates.

Composites: Bone plates made of braided composites, because of their low stiffness, is subjected to considerable strain when subjected to loading. If the magnitude of strain is large, it is possible that matrix and fibre could experience relative displacement leading to fracture. Because of the disadvantages of metallic fixation the use of bio-absorbable devices in bone fracture fixation was suggested already in 1960's. Such devices retain their strength several weeks or months in vivo, support the healing fracture and are finally metabolized after fracture healing.

The advantages of bioabsorbable implants in bone surgery are significant: there is no need for removal operation, and osteoporosis associated with rigid metallic implants can be avoided or at least reduced and the bone itself heals better. The avoidance of removal procedures leads to financial benefits, psychological advantages, and it increases operative capacity. The main disadvantage of current biodegradable materials is the premature loss of mechanical properties before the healing process is complete. In addition, PLGA undergoes an autocatalytic degradation process which results in an accelerated degradation that leads to hollowing of the implant and its catastrophic failure. Although several composite bone plates were developed using UD laminates and discontinuous short fibers to serve as alternatives for the conventional stainless-steel AO compression plates, there still remain a number of improvements to be addressed from a mechanical viewpoint.

Intramedullary Fixation. Intramedullary pins (or Nail) fixation for fracture treatment in small animals started in the 1940s slowly gained popularity. This technique is the most common type of internal fixation (Brinker et al., 1997). Pins do not counteract rotational forces or shear forces, and the cortices of avian bones are quite thin so they don't provide much purchase to hold IM pins. Additional methods of internal fixation may be utilized.
in addition to the IM pin to help counteract rotation and shear forces. Cerclage and hemicerclage wires, external fixators or stack pinning may all be employed. Cross pins may be used to stabilize metaphyseal fractures. Pins like Steinmann pins, Kirshner wires, Rush pin Kuntscher nail and interlocking nails have been used in animals. Rush Pins and kuntscher and interlocking nails (6mm diameter) are that not commonly practiced due its demerits.

Figure 4. Radiograph of a transverse femur fracture immobilized with IM pin in a dog

Interlocking nails: Since early 1950 various improved IN have been developed for treating long bone fractures in dogs. (Tass Dueland et al., 1999). Large diameter pins are inserted in the medullary cavity of fractured bone and locked in place by using screws placed perpendicularly through the cortex, pin and other cortex. Screw is inserted proximally and distally. More applicable in femur, humerus and tibia (long bones). Fixation of Diaphyseal fractures with IN provides stability against axial, bending and torsional loads. This technique overcomes rotational stability and pin migration and collapse of comminuted fracture during weight bearing when compared to intramedullary pinning.

Cross pinning: Cross pinning affords rigid stabilization of the fracture segments by providing multiple pins and varying angles of fixation. This technique is applicable to metaphyseal fracture more commonly in pet animals because of the cancellous nature of the bone, the broad contact area between opposing segments, and the close proximity of the fracture to the articular surfaces. The frequency of fractures at this location has been attributed to the inherent weakness of the metaphyseal growth plate relative to the adjacent ligaments and osseous structures (Salter and Harris, 1963; Alcantara and Stead, 1975).

At least two small Steinmann pins or kirschner wires are used to stabilize the fracture. This technique provides excellent result of distal femoral physeal fracture in canine and feline patients. With minimal hardware implantation, axial and rotational stability is achieved. Both K-wires and intramedullary pin have been used as cross pin in immature dogs and cats (Northway, 1973., Sumner Smith and Dingwall, 1973., Milton et al., 1980.,
The diameter of the trocar pointed intramedullary Steinmann pins used in these cats varied from 1.6mm-1.8mm in diameter. (Thilagar et al., 2006)

Figure 5. Lateral radiograph of Salter Haris type fracture in a cat immobilized using two small IM pin

TENSION BAND WIRE AND SCREWS

This technique is used to neutralize the distracting forces placed on certain fractured bones and bony prominences in dogs and cats. Act as compression forces against distraction forces (Schatzker, 1991). Useful in cases osteotomies of the olecranon process, trochanter major (Excision arthroplasty), fractures of the tubercalci, medial and lateral tibial maleolli and a detached tibial tuberosity. The K-wires neutralize shearing forces and the tension band wire neutralize bending loads and distraction forces. The fracture or osteotomy segments or reduced and the K-wires are passed through the segment, across the fracture line and into the main portion of the bone. These two wires are passed in parallel to each other as possible. Then a transverse hole is drilled such that a figure of eight wire will cross at or just distal to the fracture line. The orthopedic wire is then passed through the hole and around the protruding tips of the K-wires in a figure of eight pattern and the wire is tightened. This Technique provides better stability and osteosynthesis when compared to screws for fractures certain bones and bony prominences (Annie Philip, 1994).

Figure 6. Schematic diagram of Tension band techniques.
Lag Screws are passed from the fracture segments to the main segment either using washer or without washer. This technique is useful in small and larger animals. Both techniques offer perfect stabilization but the breakage of small fragments was observed while using screws for avulsion fractures.

Orthopedic wire:

Cerclage means to encircle or wrap into bundle. The orthopedic wires must be placed as tightly as possible around the bone and not entrap soft tissue (muscle, nerve, vessels) between the wire and the bone. Loose wire may not provide a stable fixation and disrupt the periosteal vascularity needed for fracture healing. useful in small animal. This technique refers to a flexible wire that completely (cerclage) or partially (hemicerclage) passes around the circumference of a fractured bone and then is tightened to provide static interfragmentary compression of bone fragments. It is always used with other method of fixation on any type of diaphyseal fracture. In general, cerclage wire for the fixation of fracture fragments should be placed approximately 5mm form the ends of the fragments and 1cm from each other.
Interfragmentary compression: Compression in-between the separated fragments can be achieved by wires and position screws. Interfragmentary compression by wires is commonly practiced in small animals. Utilized i-to prevent rotation of short oblique or transverse fracture. ii-to secure bone fragments. iii-to stabilize fissure fractures. Wires does not circle the bone. This is the least secure and consistent form of internal fixation. It should be reserved for smaller dogs and cats. This can be combined with transfixation pin to achieve rotational stability. The cruciate and horizontal mattress patterns are more effective in preventing rotational forces. (Blass et al., 1985).

Figure 9. Multiple fracture of femur in a young dog immobilized with IM pin, cerclage wire and Interfragmentary wire

Interfragmentary compression by bone screws: In dogs and cats interfragmentary compression by lag screw and position screws are routinely practiced to compress ephiphyseal, metaphyseal and diphysial fragments. Both cortical and cancellous screws are used. In large animals it is not that commonly practiced since ruminant neonatal bones have a low bone density and thin bone cortices and their ability to support and sustain implants such as intramedullary pins and screws is a primary concern. Recent studies have evaluated various screws holding power in calf bones (Kirpenstein et al., 1992; Thilagar et al., 2003a and Thilagar et al., 2005) and proved effective in stabilization.

BONE PLATE

Bone plates are adaptable to most long bone fracture, multiple complex fractures post operative complicated fractures. The species more involved is dogs, followed by horses and ruminants. Not much preferred in young animals. Few reports are available on the usage of plates (0.7mm) plates with 0.25mm screws in exotic pets but not widely practiced. Bone plate can counter all the forces created at the fracture site. Many types of bone plates are available ex C shaped for acetabulum, T shapes mini for lower radius ulna, Least Dynamic Compression plates. The use of Bone plate is depends on the body weight.
of an animal. Various size of Single plate application is possible in cases weighing below 60 kgs. (Brinker et al., 1997). The animal weighing heavily (horse, cattle) requires double plating and the outcome of the results are very good in animals weighing below 200 kg in horses (Auer, 1999) and in small size ruminants (goats, cattle) (Fessler and Adam, 1985; Tulleners, 1986; Thilagar et al., 2003a, Thilagar et al., 2005). Current use of LCDCP (Least contact dynamic compression plate) gives better results compared to DCP in experimental studies because less contact to the cortex.

Principle of bone plate fixation:
Plates should be applied to the tension side of the bone

Figure 10. 8 holes DCP in a dog (45 kg) for a transverse fracture of femur

Figure 11. DCP (Butterfly) in a calf (80 kg) for a comminuted fracture of metatarsus and position screw (S. Thilagar et al., 2005)
Minimum of two screws (four cortices) should be used on each side (proximal and distal) of the fracture in small animals but three to four screws is ideal for compression and neutralization plates and mandatory for bridging plate. The Minimum distance between fracture lines and screws is 4-5mm or at least equal to the diameter of the screw. Long plate is more effective than the short plate or plate just short of the entire length of the bone. Plate should be applied and contoured to the bone surface very closely i.e. 1mm gap.

Plate function: Bone plate can be applied as a compression plate, neutralization plate or a buttress plate. In compression plate the fracture fragments are fixed by compression. Specially designed screw holes that allow compression of the bone if the screw is inserted. Neutralization plates is applied to the fracture bone to have neutralization effect, main fragments are rigidly fixed usually with screw. Buttress plate is used shore up the fragment of bone thus maintaining length and functional angle.

Bone plate removal: It is better to remove the plate after some period which varies based on the age of the animal. In veterinary practice response to the removal of plate is poor.

<table>
<thead>
<tr>
<th>Animal age</th>
<th>Post operative period</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-3 months</td>
<td>4 weeks</td>
</tr>
<tr>
<td>3-6 months</td>
<td>2-3 months</td>
</tr>
<tr>
<td>6-12 months</td>
<td>3-5 months</td>
</tr>
<tr>
<td>Above 1 year</td>
<td>5-14 months</td>
</tr>
</tbody>
</table>

REFERENCES

Chaudhri, M.M (1997) M.V.Sc thesis submitted to Tamilnadu Veterinary and Animal Sciences University, Chennai

Fubini, S.L., Ducharme, N.G 2004 Farm Animal surgery Saunders an imprint of Elsevier USA pp316-323

Sumner-Smith, G.and Dingwall, J.S(1973) A technique for repair of fractures of the distal femoral epiphysis in the dog and *JAAHA .* 9:171-174

Thilagar, S. and Balasubramanian, N.N. (1988). Retrospective study on the incidence on anatomical location in 204 cases of fracture in dogs. *Cheiron,* 17:2, 68-71

Thilagar, S,Ganesh, T.N and George, R.S (2003a) Studies on the utility of internal fixation techniques and implants in fracture management of small ruminants, Scheme report submitted to ICAR India

Thilagar, S., Ganesh, T.N., George, R.S. and Kumaresan A.(2003b) A retrospective study on fractures in ruminants (Project report submitted to ICAR –New Delhi-submitted to Cheiron accepted for publication (in press)

ACKNOWLEDGEMENTS

I am grateful for my parents Thiru. K. Sundararajan - Thirumathi. S. Pooranam and my uncle Thiru. K. Alagumalai for their effort extended to shape me as veterinarian. I also would like to extend my Sincere appreciation to my wife Mrs. S. Sivarani and my son Prem Anand Thilagar and my daughter Priyadarshini Thilagar for their encouraging support and their affection. I must mention and acknowledge the gratitude to my colleagues of Tamilnadu Veterinary and Animal Sciences University and also my colleagues at Faculty Veterinary Medicine, UPM those responsible for my career guidance. I must mention special gratitude for Prof J.A. Auer, Director Veterinary Surgical Clinic university of Zürich for the training offered in orthopedics in 2000. At last not as least I am grateful to my then colleagues and friends in surgery (TANUVAS) and the Members of Indian Society of Veterinary Surgery for their fruitful exchange of technical information during every annual convention thus made me to stand on a platform in the field of veterinary surgery in teaching institution.
SENARAI SYARAHAN INAUGURAL

1. Prof. Dr. Sulaiman M. Yassin
 The Challenge to Communication Research in Extension
 22 Julai 1989

2. Prof. Ir. Abang Abdullah Abang Ali
 Indigenous Materials and Technology for Low Cost Housing
 30 Ogos 1990

3. Prof. Dr. Abdul Rahman Abdul Razak
 Plant Parasitic Nematodes, Lesser Known Pests of Agricultural Crops
 30 Januari 1993

4. Prof. Dr. Mohamed Suleiman
 Numerical Solution of Ordinary Differential Equations. A Historical Perspective
 11 Disember 1993

5. Prof. Dr. Mohd. Ariff Hussein
 Changing Roles of Agricultural Economics
 5 Mac 1994

6. Prof. Dr. Mohd. Ismail Ahmad
 Marketing Management: Prospects and Challenges for Agriculture
 6 April 1994

7. Prof. Dr. Mohamed Mahyuddin Mohd. Dahan
 The Changing Demand for Livestock Products
 20 April 1994

8. Prof. Dr. Ruth Kiew
 Plant Taxonomy, Biodiversity and Conservation
 11 Mei 1994

9. Prof. Ir. Dr. Mohd. Zohadie Bardaie
 Engineering Technological Developments Propelling Agriculture into the 21st Century
 28 Mei 1994

10. Prof. Dr. Shamsuddin Jusop
 Rock, Mineral and Soil
 18 Jun 1994

11. Prof Dr. Abdul Salam Abdullah
 Natural Toxicants Affecting Animal Health and Production
 29 Jun 1994
12. Prof. Dr. Mohd. Yusof Hussein
 Pest Control: A Challenge in Applied Ecology
 9 Julai 1994

13. Prof. Dr. Kapt. Mohd. Ibrahim Haji Mohamed
 Managing Challenges in Fisheries Development through Science and Technology
 23 Julai 1994

14. Prof. Dr. Hj. Amat Juhari Moain
 Sejarah Keagungan Bahasa Melayu
 6 Ogos 1994

15. Prof. Dr. Law Ah Theem
 Oil Pollution in the Malaysian Seas
 24 September 1994

16. Prof. Dr. Md. Nordin Hj. Lajis
 Fine Chemicals from Biological Resources: The Wealth from Nature
 21 Januari 1995

17. Prof. Dr. Sheikh Omar Abdul Rahman
 Health, Disease and Death in Creatures Great and Small
 25 Februari 1995

18. Prof. Dr. Mohamed Shariff Mohamed Din
 Fish Health: An Odyssey through the Asia - Pacific Region
 25 Mac 1995

19. Prof. Dr. Tengku Azmi Tengku Ibrahim
 Chromosome Distribution and Production Performance of Water Buffaloes
 6 Mei 1995

20. Prof. Dr. Abdul Hamid Mahmood
 Bahasa Melayu sebagai Bahasa Ilmu - Cabaran dan Harapan
 10 Jun 1995

21. Prof. Dr. Rahim Md. Sail
 Extension Education for Industrialising Malaysia: Trends, Priorities and Emerging Issues
 22 Julai 1995

22. Prof. Dr. Nik Muhammad Nik Abd. Majid
 The Diminishing Tropical Rain Forest: Causes, Symptoms and Cure
 19 Ogos 1995
23. Prof. Dr. Ang Kok Jee
 The Evolution of an Environmentally Friendly Hatchery Technology for Udang Galah, the
 King of Freshwater Prawns and a Glimpse into the Future of Aquaculture in the 21st Century
 14 Oktober 1995

24. Prof. Dr. Sharifuddin Haji Abdul Hamid
 Management of Highly Weathered Acid Soils for Sustainable Crop Production
 28 Oktober 1995

25. Prof. Dr. Yu Swee Yean
 Fish Processing and Preservation, Recent Advances and Future Directions
 9 Disember 1995

26. Prof. Dr. Rosli Mohamad
 Pesticide Usage: Concern and Options
 10 Februari 1996

27. Prof. Dr. Mohamed Ismail Abdul Karim
 Microbial Fermentation and Utilization of Agricultural
 Bioresources and Wastes in Malaysia
 2 Mac 1996

28. Prof. Dr. Wan Sulaiman Wan Harun
 Soil Physics: From Glass Beads To Precision Agriculture
 16 Mac 1996

29. Prof. Dr. Abdul Aziz Abdul Rahman
 Sustained Growth And Sustainable Development:
 Is there A Trade-Off for Malaysia
 13 April 1996

30. Prof. Dr. Chew Tek Ann
 Sharecropping in Perfectly Competitive Markets: A Contradiction in Terms
 27 April 1996

31. Prof. Dr. Mohd. Yusuf Sulaiman
 Back to The Future with The Sun
 18 Mei 1996.

32. Prof. Dr. Abu Bakar Salleh
 Enzyme technology: The Basis for Biotechnological Development
 8 Jun 1996

33. Prof. Dr. Kamel Ariffin Mohd. Atan
 The Fascinating Numbers
 29 Jun 1996
34. Prof. Dr. Ho Yin Wan
Fungi. Friends or Foes
27 Julai 1996

35. Prof. Dr. Tan Soon Guan
Genetic Diversity of Some Southeast Asian Animals: Of Buffaloes and Goats and Fishes Too
10 Ogos 1996

36. Prof. Dr. Nazaruddin Mohd. Jali
Will Rural Sociology Remain Relevant In The 21st Century
21 September 1996

37. Prof. Dr. Abdul Rani Bahaman
Leptospirosis - A Mode/ for Epidemiology, Diagnosis and Control of Infectious Diseases
16 November 1996

38. Prof. Dr. Marziah Mahmood
Plant Biotechnology - Strategies for Commercialization
21 Disember 1996

39. Prof. Dr. Ishak Hj. Omar
Market Relationships in The Malaysian Fish Trade: Theory and Application
22 Mac 1997

40. Prof. Dr. Suhaila Mohamad
Food and its Healing Power
12 April 1997

41. Prof. Dr. Malay Raj Mukerjee
A Distributed Collaborative Environment for Distance Learning Applications
17 Jun 1998

42. Prof. Dr. Wong Kai Choo
Advancing the Fruit Industry in Malaysia: A Need to Shift Research Emphasis
15 Mei 1999

43. Prof. Dr. Aini Ideris
Avian Respiratory and Immunosuppressive Diseases - A Fatal Attraction
10 Julai 1999

44. Prof. Dr. Sariah Meon
Biological Control of Plant Pathogens: Harnessing the Richness of Microbial Diversity
14 Ogos 1999
45. Prof. Dr. Azizah Hashim
The Endomycorrhiza: A Futile Investment?
23 Oktober 1999

46. Prof. Dr. Noraini Abd. Samad
Molecular Plant Virology: The Way Forward
2 Februari 2000

47. Prof. Dr. Muhamad Awang
Do We have Enough Clean Air to Breathe?
7 April 2000

48. Prof. Dr. Lee Chnoong Kheng
Green Environment, Clean Power
24 Jun 2000

49. Prof. Dr. Mohd. Ghazali Mohayidin
Managing Change in the Agriculture Sector: The Need for Innovative Educational Initiatives
12 Januari 2002

50. Prof. Dr. Fatimah Mohd. Arshad
Analisis Pemasaran Pertanian Di Malaysia: Keperluan Agenda Pembaharuan
26 Januari 2002

51. Prof. Dr. Nik Mustapha R. Abdullah
Fisheries Co-Management: An Institutional Innovation Towards Sustainable Fisheries Industry
28 Februari 2002

52. Prof. Dr. Gulam Rusul Rahmat Ali
Food Safety: Perspectives and Challenges
23 Mac 2002

53. Prof. Dr. Zaharah Binti A. Rahman
Nutrient Management Strategies for Sustainable Crop Production in Acid Soils: The Role of Research using Isotopes
13 April 2002

54. Prof. Dr. Maisom Abdullah
Productivity Driven Growth: Problems & Possibilities
27 April 2002

55. Prof. Dr. Wan Omar Abdullah
Immunodiagnosis and Vaccination for Brugian Filariasis: Direct Rewards from Research Investments
6 Jun 2002
56. **Prof. Dr. Syed Tajuddin Syed Hassan**
Agro-ento Bioinformation: Towards the Edge of Reality
22 Jun 2002

57. **Prof. Dr. Dahlan Ismail**
Sustainability of Tropical Animal- Agricultural Production Systems: Integration of Dynamic Complex Systems
27 Jun 2002

58. **Prof. Dr. Ahmad Zubaidi Baharumshah**
The Economics of Exchange Rates in the East Asian Countries
26 October 2002

59. **Prof. Dr. Shaik Md. Noor Alam S.M. Hussain**
Contractual Justice in Asean: A Comparative View of Coercion
31 October 2002

60. **Prof. Dr. Wan Md. Zin Wan Yunus**
Chemical Modification of Polymers: Current and Future Routes for Synthesizing New Polymeric Compounds
9 November 2002

61. **Prof. Dr. Annuar Md Nassir**
Is The KLSE Efficient? Efficient Market Hypothesis vs Behavioural Finance
23 November 2002

62. **Prof. Ir. Dr. Radin Umar Radin Sohadi**
Road Safety Interventions in Malaysia: How Effective Are They?
21 Februari 2003

63. **Prof. Dr. Shamsher Mohamad**
The New Shares Market: Regulatory Intervention, Forecast Errors and Challenges
26 April 2003

64. **Prof. Dr. Han Chun Kwong**
Blueprint for Transformation or Business as Usual? A Structurational Perspective of The Knowledge-Based Economy in Malaysia
31 Mei 2003

65. **Prof. Dr. Mawardi Rahmani**
Chemical Diversity of Malaysian Flora: Potential Source of Rich Therapeutic Chemicals
26 Julai 2003

66. **Prof. Dr. Fatimah Md. Yusoff**
An Ecological Approach: A Viable Option for Aquaculture Industry in Malaysia
9 Ogos 2003
67. Prof. Dr. Mohamed Ali Rajion
The Essential Fatty Acids-Revisited
23 Ogos 2003

68. Prof. Dr. Azhar Md. Zain
Psychotherapy for Rural Malays - Does it Work?
13 September 2003

69. Prof. Dr. Mohd Zamri Saad
Respiratory Tract Infection: Establishment and Control
27 September 2003

70. Prof. Dr. Jinap Selamat
Cocoa-Wonders for Chocolate Lovers
14 February 2004

71. Prof. Dr. Abdul Halim Shaari
High Temperature Superconductivity: Puzzle & Promises
13 March 2004

72. Prof. Dr. Yaakob Che Man
Oils and Fats Analysis - Recent Advances and Future Prospects
27 March 2004

73. Prof. Dr. Kaida Khalid
Microwave Aquametry: A Growing Technology
24 April 2004

74. Prof. Dr. Hasanah Mohd Ghazali
Tapping the Power of Enzymes - Greening the Food Industry
11 May 2004

75. Prof. Dr. Yusof Ibrahim
The Spider Mite Saga: Quest for Biorational Management Strategies
22 May 2004

76. Prof. Datin Dr. Sharifah Md Nor
The Education of At-Risk Children: The Challenges Ahead
26 June 2004

77. Prof. Dr. Ir. Wan Ishak Wan Ismail
Agricultural Robot: A New Technology Development for Agro-Based Industry
14 August 2004

78. Prof. Dr. Ahmad Said Sajap
Insect Diseases: Resources for Biopesticide Development
28 August 2004
<table>
<thead>
<tr>
<th>Number</th>
<th>Author</th>
<th>Title</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>79</td>
<td>Prof. Dr. Aminah Ahmad</td>
<td>The Interface of Work and Family Roles: A Quest for Balanced Lives</td>
<td>11 March 2005</td>
</tr>
<tr>
<td>80</td>
<td>Prof. Dr. Abdul Razak Alimon</td>
<td>Challenges in Feeding Livestock: From Wastes to Feed</td>
<td>23 April 2005</td>
</tr>
<tr>
<td>81</td>
<td>Prof. Dr. Haji Azimi Hj. Hamzah</td>
<td>Helping Malaysian Youth Move Forward: Unleashing The Prime Enablers</td>
<td>29 April 2005</td>
</tr>
<tr>
<td>82</td>
<td>Prof. Dr. Rasedee Abdullah</td>
<td>In Search of An Early Indicator of Kidney Disease</td>
<td>27 Mei 2005</td>
</tr>
<tr>
<td>83</td>
<td>Prof. Dr. Zulkifli Hj. Shamsuddin</td>
<td>Smart Partnership: Plant-Rhizobacteria Associations</td>
<td>17 Jun 2005</td>
</tr>
<tr>
<td>84</td>
<td>Prof. Dr. Mohd Khanif Yusop</td>
<td>From The Soil to The Table</td>
<td>1 Julai 2005</td>
</tr>
<tr>
<td>85</td>
<td>Prof. Dr. Annuar Kassim</td>
<td>Materials Science and Technology: Past, Present and the Future</td>
<td>8 Julai 2005</td>
</tr>
<tr>
<td>86</td>
<td>Prof. Dr. Othman Mohamed</td>
<td>Enhancing Career Development Counselling and the Beauty of Career Games</td>
<td>12 August 2005</td>
</tr>
<tr>
<td>87</td>
<td>Prof. Ir. Dr. Mohd Amin Mohd Soom</td>
<td>Engineering Agricultural Water Management Towards Precision Farming</td>
<td>26 August 2005</td>
</tr>
<tr>
<td>88</td>
<td>Prof. Dr. Mohd Arif Syed</td>
<td>Bioremediation - A Hope Yet for the Environment?</td>
<td>9 September 2005</td>
</tr>
<tr>
<td>89</td>
<td>Prof. Dr. Abdul Hamid Abdul Rashid</td>
<td>The Wonder of Our Neuromotor System and the Technological Challenges They Pose</td>
<td>23 December 2005</td>
</tr>
</tbody>
</table>
90. Prof. Dr. Norhani Abdullah
Rumen Microbes and Some of Their Biotechnological Applications
27 January 2006

91. Prof. Dr. Abdul Aziz Saharee
Haemorrhagic Septicaemia in Cattle and Buffaloes: Are We Ready For Freedom?
24 February 2006

92. Prof. Dr. Kamariah Abu Bakar
Activating Teachers' Knowledge and Lifelong Journey in Their Professional Development
3 March 2006

93. Prof. Dr. Borhanuddin Mohd Ali
Internet Unwired
24 March 2006