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ABSTRACT

Economic dependency on fossil fuels and the resulting effects of 
its usage on the environment has placed considerable focus on 
utilizing biosugars from lignocellulosic biomass, the largest known 
renewable carbohydrate source as an alternative. Biosugars are 
derived from cellulose and hemicelluloses constituents; however 
these are in turn not readily accessible to enzymatic hydrolysis and 
hence requiring pretreatment, for extensive modification of the 
lignocellulosic structure. A number of pretreatment technologies are 
currently under development and tested at pilot scale. Hydrolysis 
of lignocellulose into biosugars requires a number of different 
cellulases and hemicellulases. The hydrolysis by cellulases is 
a sequential breakdown of the linear glucose chains, whereas 
hemicellulases must be capable of hydrolysing branched chains 
containing different sugars and functional groups. The technology 
for pretreatment and hydrolysis has been developed to an extent that 
is close to a commercially viable level. For example, processing of 
lignocelluloses at high substrate levels have become possible, all 
the while with improvements made on enzyme performances. In 
addition, the cost of enzymes has also been reduced. Nevertheless, 
a number of technical and scientific issues within pretreatment 
and hydrolysis remain to be solved and with significant expected 
improvements in yield and cost reductions, large-scale fermentation 
of lignocellulosic biomass is conceived to be possible. The concept 
of producing lignocellulosic biofuel, bioproducts and chemical 
through a biorefinery using lignocellulosic biomass had been around 
for 70 years or more. The use of renewable energy resources has 
become essential at a time when the focus is on global warming, 
carbon dioxide emission, security of energy supply, and reduction 
in consumption of fossil-based fuels.  The recent interest in this 
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biorefinery concept is based on the mitigation of climate change 
by substituting the biomass energy for petroleum or other fossil-
fuel energy. Thus the realization of biorefinery concept remains a 
challenge.
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INTRODUCTION

Lignocellulosic material or lignocellulosic biomass refers to plant 
biomass that is composed of cellulose, hemicellulose and lignin 
(Ibrahim, 2013). The major combustible component of non-food 
energy crops is cellulose, hemicellulose and followed by lignin. 
Currently, biomass is the most important source of renewable energy 
and the only renewable source of carbon. It can provide about 13% 
of total energy consumption worldwide (IEA Statistics, 2008). 
However, because much of this consumption concerns firewood-
based heating and cooking, it cannot be considered as optimal use 
of lignocellulosic biomass resources. There remains considerable 
room for the development of lignocellulosic biomass value chains 
for the production of energy, chemicals, polymers and materials.
 Lignocellulosic biomass is increasingly recognized as a valuable 
commodity, since it is an alternative to petroleum for the production 
of biofuels and chemicals. Even today, cellulose consumption is 
threefold higher than that of steel and is equal to that of cereals 
(Das and Singh, 2004), but its current uses are mainly restricted 
to the materials sector (wood-based and paper). The majority of 
lignocellulosic biomass is produced from agricultural, forestry, 
landscaping, and many other industries. The value increases 
from year to year, especially in a tropical country like Malaysia. 
Lignocellulosic biomass is currently being given much attention 
by researchers to be used as feedstock or raw material for many 
biological processes, since its major compositions are cellulose, 
hemicellulose and lignin. It can be burned directly to generate 
energy, or through biological and engineering processes, it can be 
converted into biofuels as shown in Figure 1, similar to fuel derived 
from petroleum. 
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Figure 1 General process flow of lignocellulosic biomass to biofuels

 Biofuel production is a recent development, which has gained 
significant attention due to the ever-dwindling supply of natural 
resources following our over-dependence on fossil fuels. This 
has stemmed a great deal of scientific research into the issue 
of alternative energy and biofuel has been seen as a potentially 
environmental and affordable way for us to reduce our dependency 
on fossil fuels. Up until recently, car manufacturers are highly 
reluctant to invest significantly in biofuel research for mainstream 
vehicles. This is because biofuel is to some extent an unproven 
technology - we know it works; just there is little research on 
the overall benefits of biofuel not only to consumers, but also to 
the planet. This has meant that until further research has been 
completed, many industries are reluctant to join in to develop biofuel 
into a sustainable and realistic form of energy.



5 ❘❘❚ 

Suraini Abd. Aziz

 Many people argue that the reason car manufacturers have 
started to adopt biofuel as a technology is mainly because of the 
pressure from governments across the globe due to the environmental 
impact that fossil fuels are having on the planet. Speaking from an 
environmental perspective, the rate of consumption for fossil fuel 
has risen exponentially in the past twenty years and as a result, we 
are now faced with the reality that fossil fuels such as petrol and 
diesel will run out within the next hundred years. Biofuels are a 
viable alternative to fossil fuels. Many varieties exist and they vary 
significantly. Some examples are that of biodiesel, which involves 
growing crops that contain high amounts of natural oil then through 
a process of hydrogenation or refining a compatible diesel substitute 
is created. The created biodiesel can then be mixed with mineral 
diesel to be used in any diesel-powered automobile.
 A similar process in creating bio-petrol also exists, by 
fermenting crops producing sugar such as sugar cane. This creates 
natural ethanol, which can also be mixed with petrol to create 
hybrid biofuel capable for use in any petrol powered vehicle. 
However, ethanol’s corrosively higher compared to petrol which 
presents a problem and as a result, it has limited use in aircrafts 
and boats. These are examples of first generation biofuel and due 
to their nature, they may or may not be long-term economically 
or environmentally viable. Arguments exist that both support the 
continued use of biofuel, however there is prove that they are not 
the miracle fuel we are waiting for.
 The truth is that biofuel technology is still at its infancy. In the 
next twenty years, we anticipate to see biofuel research expand 
exponentially as we get closer to the day when fossil fuels are 
exhausted. Until then, continued reliance on fossil fuel will persist 
and we can only hope that biofuel as an alternative will be a reality 
before then.
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LIGNOCELLULOSIC BIOMASS

In Malaysia, lignocellulosic biomass is mainly contributed by 
agricultural waste. Palm oil tree is the most planted plant with 4.92 
million hectares (49200 km2) of land area planted in 2011 (Malaysia 
Palm Oil Industry, 2011). The lignocellulosic biomass generated 
from palm oil plantations achieved up to 85.5% of total biomass 
production in 2006 (Shuit et al., 2009). The high production of 
plant biomass in Malaysia was due to the high sunlight intensity 
over time and high rainfall per year. Agriculture sector contributed 
about 41% of the Malaysia Growth National Income (GNI) in 2010 
(Agensi Inovasi Malaysia, 2011).
 In the year of 2006, approximately 51.2 million tonnes of oil 
palm biomass was produced in Malaysia. The number represented 
15.8 million tonnes of oil palm empty fruit bunch (OPEFB), 12.9 
million tonnes of oil palm frond (OPF), 9.6 million tonnes of 
mesocarp fiber, 8.2 million tonnes of oil palm trunk (OPT) and 4.7 
million tonnes of oil palm shell (Malaysia Palm Oil Board, 2006). 
These numbers have increased greatly in the past few years. In 2010, 
the total oil palm biomass recorded was almost 80 million tonnes. 
This value is estimated to increase up to 85-110 million tonnes in 
2020 (Agensi Inovasi Malaysia, 2011). The lignocellulosic biomass 
generated from the palm oil industry is shown in Figure 2.
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Figure 2  Oil palm biomass generated in the palm oil plantation and 
palm oil mill

(Source: EB Research Report, 2013; Ibrahim, 2013)

 Besides palm oil industry, Malaysia also produces other types 
of lignocellulosic biomass such as sago biomass and rice biomass. 
Sago biomass is produced from the processing of sago starch. 
Malaysia is recognized as one of the world’s biggest exporters of 
sago starch, which is currently the largest sago-growing areas, with 
export over the past 10 years being between 55,000-65,000 tonnes/
year of starch mainly to Peninsular Malaysia, Japan, Singapore, and 
other countries. The extraction of sago starch involves debarking, 
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rasping, sieving, settling washing, and drying (Awg-Adeni et al., 
2010). During the extraction of sago starch, three types of waste 
have been produced; sago bark, sago hampas and sago wastewater. 
Figure 3 shows the flowchart of sago starch processing. However, 
those wastes are not yet well utilized and are disposed into the 
nearby river without proper treatment hence causing pollution to that 
area. Considering the value of this sago biomass and the importance 
of conserving the environment, research efforts has continuously 
been conducted to properly utilize these wastes. Sago hampas 
contains about 50% of starch with the remaining constituents being 
lignin, cellulose and hemicelluloses (Abd-Aziz, 2002; Abd-Aziz 
et al., 2010). The starch can be hydrolyzed using Dextrozyme (an 
amylase) producing sago hampas hydrolysate in a liquid form 
(Shahrim, 2006; Shahrim et al., 2008) and sago pith residue (SPR), 
the remaining solid residue (Linggang, 2013). This lignocellulosic 
material consists of about 60% of cellulose and hemicellulose 
with lignin, ash and other component materials representing the 
remaining components (Jenol et al., 2014; Linggang et al., 2012).
 Paddy is also an important crop in Malaysia and it  is vital for 
the nation’s food safety (Fatimah et al., 2007). In Malaysia, the total 
paddy production increased from 2,257 tonnes in 2003 to 2,384 
tonnes in 2008 while the average yield of paddy increased from 
3,360 kg/ha in 2003 to 3,556 kg/ha in 2008. Land utilization for 
paddy production is currently at 674,928 hectares with 76% being 
in Peninsular Malaysia (515,657 ha) while Sarawak and Sabah 
accounts for 18% (118,919 ha) and 6% (40,352 ha) of the total 
hectares, respectively (Ramli et al., 2012). Apart from providing 
the country’s staple food, the rice industry has also generated stable 
income for the country. 



9 ❘❘❚ 

Suraini Abd. Aziz

Figure 3  The schematic flowchart of sago starch extraction process 
(Source: Awg-Adeni et al., 2010)

 Rice processing has always contributed to a large amount of 
rice by-products. During the processing of paddy rice, few parts 
are produced to be consumed by human while the by-products are 
usually disregarded or utilized for other purposes. The by-products 
produced after processing of paddy rice include bran, husk, straw, 
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polished rice and broken rice as shown in Figure 4. Rice straw is 
one of the most abundant agriculture residues produced from rice 
processing. The rice plants (dry weight) are composed of about 
50% of rice straw, with a significant variation from 40 to 60% 
according to the cultivar and cultivation method. For every tonne of 
grain harvested, about 1.35 tonnes of rice straw remain in the field. 
Rice straw has high potential as a source of lignocellulosic biomass 
because of its high yield per hectare. The amount of recoverable 
straw depends of the method of reaping and harvesting and on the 
condition of the field (wet or dry) and crop (lodged or not). The 
average net production of dry straw is about 5.6-6.7 t/ha (2.5-3.0 
tonnes/acre) (Mohamad Remli, 2014).
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Figure 4  The schematic flowchart of paddy processing in rice industry 
(Source: Mohamad Remli, 2014)
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 Lignocellulosic biomass is a plant-based material composed of 
lignin, cellulose and hemicellulose. This class of biomass includes 
wood and fibrous materials from organic sources, agricultural 
wastes, organic municipal wastes and organic industrial wastes 
(Abd-Aziz and Hassan, 2009). On average, lignocellulosic biomass 
is composed of 38-50% of cellulose, 23-32% of hemicellulose 
and 15-25% of lignin. Cellulose is physically associated with 
hemicellulose, and physically and chemically associated with lignin 
(Ibrahim, 2013). Basically, the individual cellulose molecules are 
linked together to form elementary microfibrils, of which in turn 
are aggregated by intermolecular hydrogen bonding into larger 
subunits called fibrils. The microfibrils contain alternating phases 
of highly ordered (crystalline) and randomly oriented (amorphous) 
cellulose embedded in a matrix of hemicellulose (Bahrin, 2012). The 
cellulose and hemicellulose fractions are covered in an amorphous 
layer of lignin (Astimar et al., 2002). The presence of lignin and 
hemicellulose makes the access of cellulase enzymes to cellulose 
difficult, thus reducing the efficiency of the hydrolysis process 
(Razak et al., 2012). The ratio of cellulose, hemicellulose and lignin 
within the polymer varies between different plants, wood tissues 
and cell wall layers (Rubin, 2008). Figure 5 shows the organization 
of cellulose, hemicellulose and lignin in the microfibril structures 
of plant cell wall.
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Figure 5  Structure of lignocellulosic material 
(Source: Rubin, 2008) 

a. Cellulose: Cellulose is an organic polysaccharide consisting 
of a linear chain of several hundreds to over nine thousand 
β(1→4) linked D-glucose (C

6
H

10
O

5
)n units. Cellulose, a fibrous, 

tough, water-insoluble substance, is found in the cell walls of 
plants, particularly in the stalks, stems, trunks and all the woody 
portions of the plant body (Nelson et al., 2008). Cellulose 
comprises 40-60% of the dry weight of plant material and this 
composition is dependent on the plant species and their parts 
(Ibrahim, 2013).
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Shaw (2008) reported that binding of wood material during hot 
pressing/densification is mainly dependent on the transition 
of cellulose into the amorphous state. According to Bahrin 
(2012), due to the semi-crystalline structure, hydrogen bonded 
cellulose cannot be dissolved easily in conventional solvents, 
and it cannot be melted before it burns; hence, cellulose itself 
is not a suitable adhesive. This can be overcome by breaking 
the hydrogen bonds, thus making the cellulose molecule more 
flexible. Cellulose requires a temperature of 320°C and pressure 
of 25 MPa to become amorphous in water.

b. Hemicellulose: Hemicellulose is made of several heteropolymers 
(matrix polysaccharides) present in almost all plant cell walls 
along with cellulose. While cellulose is crystalline, strong, and 
resistant to hydrolysis; hemicellulose has a random, amorphous 
structure with less strength. Hemicellulose is a polysaccharide 
related to cellulose and comprises 20-40% of the biomass 
of most plants (Ibrahim, 2013). In contrast to cellulose, 
hemicellulose is derived from several sugars in addition 
to glucose, including especially xylose but also mannose, 
galactose, rhamnose and arabinose (Shambe and Kennedy, 
1985). Branching in hemicellulose produces an amorphous 
structure that is more easily hydrolyzed than cellulose (Shaw, 
2008). Also, hemicellulose can be dissolved in strong alkali 
solutions. Hemicellulose provides structural integrity to the 
cell. Some researchers believe that natural bonding may occur 
due to the adhesive properties of degraded hemicellulose 
(Bhattacharya et al., 1989).
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c. Lignin: Lignin is a complex chemical compound most 
commonly derived from wood and is an integral part of the 
cell walls of plants (Zandersons et al., 2004). The compound 
has several unusual properties as a biopolymer, not the least its 
heterogeneity in lacking a defined primary structure. Lignin fills 
the spaces in the cell wall between cellulose and hemicellulose. 
It is covalently linked to hemicellulose and thereby crosslinks 
different plant polysaccharides, conferring mechanical strength 
to the cell wall and consequently to the whole plant structure 
(Bahrin, 2012; Razak, 2013).

Lignin acts as a binder for the cellulose fibres. This component 
melts at temperatures above 140°C (Bahrin et al., 2012a), 
therefore it exhibits thermosetting properties. Lignin is the 
component that permits adhesion in the wood structure, and 
is a rigidifying and bulking agent. The adhesive properties 
of thermally softened lignin are thought to contribute 
considerably to the strength characteristics of briquettes made 
of lignocellulosic materials (Shaw, 2008).

THE KEY TO EFFECTIVE ENZYMATIC 
HYDROLYSIS OF LIGNOCELLULOSIC BIOMASS

Enzymes play a critical role in the conversion of lignocellulosic 
waste into fuels and chemicals, but the high cost of these enzymes 
presents a significant barrier to commercialization. In the simplest 
terms, the cost is a function of the large amount of enzyme 
protein required to break down polymeric sugars in cellulose and 
hemicellulose to fermentable monomers. Significant effort has been 
expended to reduce this by focusing on improving the efficiency 
of known enzymes, identification of new, more active enzymes, 
or creating mixture of enzyme cocktail in order to improve the 
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hydrolysis efficiency for selected pretreated substrates, and therefore 
minimizing production costs.
 The enzymatic process is regarded as the most attractive way 
to degrade cellulose to glucose (Ibrahim et al., 2013; Razak et al., 
2012; Yu and Zhang, 2004). However, enzyme-catalysed conversion 
of cellulose to glucose is very slow unless the biomass has been 
subjected to some form of pretreatment, as native cellulose is 
well protected by a matrix of hemicellulose and lignin (Razak et 

al., 2012; Bahrin et al., 2012a). Pretreatment of the raw material 
is perhaps the single most crucial step as it has a large impact 
on all the other steps in the process, e.g. enzymatic hydrolysis, 
fermentation, downstream processing and wastewater handling, in 
terms of digestibility of the cellulose, fermentation toxicity, stirring 
power requirements, energy demand in the downstream processes 
and wastewater treatment demands.
 An effective pretreatment should have a number of features 
that include (Galbe and Zacchi, 2007):

i. High recovery of all carbohydrates in the system.

ii. High digestibility of the cellulose in the subsequent enzymatic 
hydrolysis.

iii. Very limited amounts of sugar and lignin degradation products 
or zero residues. The pretreatment liquid should be possible to 
ferment without detoxification.

iv. Pretreated liquid fraction containing high solids concentration 
as well as high concentrations of liberated sugars.

v. Pretreated residues have low energy demand or can be presented 
in a way so that the energy can be reused in other process steps 
as secondary heat.

vi. Low capital and operational cost. 
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 The above features have been mentioned by Bahrin (2012) 
and Razak (2013) on the importance of pretreatment to open up, 
alter or remove the lignin structure so that the internal cellulose is 
exposed for cellulase action. The action of cellulase on pretreated 
lignocellulosic biomass has been explained by Ibrahim (2013) and 
Linggang (2013), where the efficiency is mostly dependent on the 
yield of biosugars produced with low amounts of cellulase used. 
Additional positive features are present if hemicellulose sugars are 
obtained in the liquid as monomer sugars, this would help to avoid 
the use of hemicellulases, and/or if the lignin without being oxidized 
is separated from the cellulose, this would alleviate the unproductive 
binding of cellulases on lignin in the enzymatic hydrolysis step. 
 Assessment of pretreatment is usually done by using some of 
(or a combination of) the following methods:

i. Analysis of the content of sugars liberated during pretreatment 
to the liquid as a combination of monomer and oligomer sugars, 
as well as analysis of the carbohydrate content of the water-
insoluble solids. This gives the total recovery of carbohydrates 
in the pretreatment step (Linggang, 2013).

ii. Enzymatic hydrolysis of the water insoluble solid, either washed 
or non-washed.

iii. Fermentation of the pretreatment liquid to assess inhibition of 
the fermenting microorganism (Razak, 2013).

iv. Simultaneous saccharification and fermentation (SSF) of either 
the whole slurry or the washed water insoluble solid (Ibrahim, 
2013). 

 The enzymatic hydrolysis (in i and iv) is performed using 
cellulases, i.e. a mixture of various cellobiohydrolases and 
endoglucanases supplemented with β-glucosidase. The latter is not 
a cellulase as it only cleaves cellobiose into two glucose molecules. 
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It has, however, a very important role in hydrolysis since cellobiose 
is an end-product inhibitor of many cellulases (Ibrahim et al., 2013; 
Ibrahim, 2013). On the other hand, β-glucosidase is also inhibited 
by glucose (Ibrahim et al., 2013; Linggang et al., 2012). Since 
the enzymes are inhibited by the end products, the build-up of 
any of these products affects cellulose hydrolysis negatively. The 
maximum cellulase activity for most fungus-derived cellulases 
and β-glucosidase occurs at 50±5°C and a pH of 4.0-5.0. However, 
the optimal conditions for enzymatic hydrolysis change with the 
hydrolysis residence time and are also dependent on the source of 
the enzymes and types of substrate (Ibrahim et al., 2013; Razak 
et al., 2012; Linggang et al., 2012). Although the properties of 
the cellulase enzyme complex has a significant effect on how 
effectively a lignocellulosic material will be hydrolyzed, it is the 
biomass pretreatment and the intrinsic structure/composition of 
the substrate itself that are primarily responsible for its subsequent 
hydrolysis by cellulases. It is apparent that in a sequential series 
of events, the conditions employed in the chosen pretreatment will 
affect various substrate characteristics, which in turn govern the 
susceptibility of the substrate to be hydrolyzed by cellulase and 
subsequent fermentation of the released biosugars. 
 Choosing the appropriate pretreatment for a particular biomass 
feedstock is frequently a compromise between minimizing the 
degradation of the hemicellulose and cellulose components while 
maximizing the ease of hydrolysis of the cellulosic substrate. The 
digestibility of pretreated lignocellulosic substrates is further 
complicated by the lignin-hemicellulose matrix in which cellulose 
is tightly embedded. Pretreatment conditions can be tailored to 
create either solid or solid/liquid substrates with varying levels 
of cellulose, hemicellulose and lignin. It is apparent that lignin 
affects enzymatic hydrolysis by blocking cellulose and by chemical 
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interactions facilitated by its hydrophobic surface properties 
and various functional groups. The role of hemicellulose is less 
obvious although there is good evidence to support the action of 
hemicellulose as a barrier restricting access to cellulases. In the 
past, many investigators have attributed to enhance the enzymatic 
hydrolysis performance of a particular pretreatment to change in the 
proportion of the lignin, hemicellulose and cellulose in the substrate. 
However, it is important to advance this conclusion one step further 
as it is likely that decreases in lignin and hemicellulose content that 
occur as a result of pretreatment also affect the physical properties 
of the cellulosic component, such as its crystallinity, the degree of 
polymerization and the surface area of the substrate accessible to 
cellulases. Therefore, the search for efficient pretreatment methods 
is compulsory in order to hydrolyze lignocellulosic biomass into 
biosugars prior to biofuel production.

THE SEARCH FOR EFFICIENT PRETREATMENT 
METHODS

The protective structure of lignin that covers the internal cellulose 
and hemicellulose has brought forward the challenge to convert 
this polymer into simple sugar monomers or so called biosugars. 
Thus, pretreatment has been proposed to alter the lignocellulosic 
structure to be accessible by cellulase (Bahrin, 2012). Figure 
6 illustrates the effect of pretreatment process applied to the 
lignocellulosic biomass. Pretreatment is considered as one of the 
most expensive processing steps in the conversion of cellulosic 
polymer into sugar monomers (Alvira et al., 2010). An effective 
pretreatment is determined based on several criteria; avoiding size 
reduction, preserving hemicellulose fractions, limiting formation 
of inhibitors, minimizing energy input and being cost-effective 
(National Research Council, 1999). The hydrolysis percentage of 
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cellulose into biosugars is also considered as a criterion of effective 
pretreatment (Razak, 2013). The pretreatment methods have 
generally been divided into three categories; physical, chemical 
and biological pretreatment. Combination of pretreatment by 
conjugating two or more pretreatment methods from the same or 
different categories are also commonly practiced (McMillan, 1994; 
Mohamad Remli et al., 2014).

Figure 6  Schematic presentation of the effect of pretreatment on 
lignocellulosic biomass 

(Source: Mosier et al., 2005)

Physical Pretreatment

Physical pretreatment usually applies to any physical approaches 
done to alter the structure of lignocellulosic material by the use 
of steam explosion, hot water, mechanical comminution and/or 
energy radiation (Bahrin, 2012). Steam explosion is one of the most 
common pretreatment methods applied for lignocellulosic biomass. 
It uses water steam with temperatures of 160-270°C for several 
seconds to a few minutes and leads to physiochemical changes of 
hemicellulose and lignin (Shamsudin, 2013). Figure 7 shows the 
effect of this pretreatment on pressed and shredded OPEFB.  Flake 
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and spherical geometry of OPEFB particles were found from the 
treated OPEFB at 140°C and 180°C, respectively. Most of the 
treated OPEFB were mixtures of various sizes and shapes when 
treated at more than 180°C. OPEFB with cylinder-like geometry has 
resulted in the highest aspect ratio among other geometry, making 
it more favourable for bioconversion process (Bahrin et al., 2011; 
Bahrin et al., 2012a).

Figure 7  Observation of OPEFB particle geometry; spherical shape 
(a), flake-like (b), and cylinder-like (c), after treated with 210°C of 

superheated treatment 
(Source: Bahrin et al., 2012a)

 Steam explosion is considered as one of only limited low cost 
lignocellulosic pretreatment method that had been introduced to 
the pilot scale and commercial application (Zheng et al., 2009). 
However, low hemicellulose sugar yield has been one of the 
disadvantages of this treatment. Alternatively, liquid hot water 
(LHW) treatment method has attracted interest as one of the 
most effective lignocellulosic pretreatment. This pretreatment 
has the potential of cellulose digestibility, pentose recovery, 
biosugars extraction and has little or no inhibitory effect towards 
microorganism fermentation (van Walsum et al., 1996). Pressure is 
utilized to maintain the water condition at liquid state with elevated 
temperature. Another common practice of physical pretreatment 
is mechanical comminution. This method involves the breaking 
down of the lignocellulosic biomass into small particle sizes and 
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thus enhancing the surface area to be accessed by the enzyme. It 
is used by any mechanical milling, grinding or chipping machine. 
However, this method requires high energy consumption to rotate 
the milling or grinding motor and is also time consuming, thus 
making the whole process expensive. 

Chemical Pretreatment

Chemical pretreatment is the most studied form of lignocellulosic 
pretreatment method when compared to other categories. This 
treatment originated from the paper industry to delignify the 
cellulosic components in order to produce high quality of paper 
(Fan et al., 1982).  Acid and alkaline pretreatments are the most 
common method applied under this category. Acid hydrolysis of 
lignocellulosic biomass is usually performed using either sulphuric 
acid (H

2
SO

4
) or hydrochloric acid (HCl) that has strong digesting 

capability to break the polysaccharide bonds of cellulosic material 
into monomers. Although this method is effective and powerful 
enough for cellulose hydrolysis, acid is however toxic, corrosive, 
hazardous and not environmental friendly. 
 The sugars produced by acid hydrolysis also require further 
treatment to remove inhibitory components prior to microorganism 
fermentation as has been done by Zainudin et al. (2012) and 
Zainudin (2009) using phase-separation system to recover glucose 
from acid-hydrolysed OPEFB. The lignocellulosic digestion by acid 
has also been tested on OPDC by Razak et al. (2012), but it seems 
not to be attractive as compared to alkaline pretreatment. This is 
because acid treatment hydrolyzes cellulose into biosugars while 
alkaline treatment solubilises the lignin material into small droplets 
(Umi Kalsom et al., 1997), thus exposing the internal cellulose 
structure to be hydrolysed by cellulases. Therefore, alkaline 
treatment is the most studied pretreatment for lignocellulosic 
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biomass that employs various bases including sodium hydroxide 
(NaOH), calcium hydroxide (Ca(OH)

2
), potassium hydroxide 

(KOH), ammonium hydroxide (NH
4
OH) and other related alkaline 

chemicals (Zheng et al., 2009). This treatment causes the swelling 
effect to lignocellulosic biomass, in turn causing depolymerization 
and decrease in crystallinity by disrupting the lignin structure and 
subsequently increasing the exposure of the internal surface and 
making it accessible to the enzyme digestion (Ibrahim, 2013) as 
shown in Figure 8. Considering the waste generated from this 
pretreatment, alkaline hydrolysate (black liquor of the solubilized 
lignin) has been tested for the production of biovanillin (Aanifah, 
2013; Aanifah et al., 2014) and its absorption has been done by 
Abu Samah et al. (2013). 

Figure 8  Untreated OPEFB (a) and pretreated OPEFB (b) under 500× 
magnification of scanning electron microscope (SEM) which shows 
the exposure of cellulose structure after treated with 2% NaOH with 

autoclaved 
(Source: Ibrahim, 2013)
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Biological Pretreatment

Biological pretreatment is the degradation of lignocellulosic 
material by microorganisms mainly fungi and bacteria. There 
are few fungi such as white rod fungi that are able to alter the 
lignin structure of the biomass by producing the enzyme called 
ligninase. This digesting enzyme degrades the lignin, by oxidizing 
the substituted aromatic compound of the lignin to aryl cation 
radicals (Zanirun, 2009), and thus exposing the internal part of 
cellulose to be accessed by cellulase. This technique has been 
proven as a promising lignocellulosic pretreatment method with 
mild conditions applied, no chemicals involved, low energy input 
and being environmental friendly (Sun and Cheng, 2002). However, 
the process is very slow and requires careful monitoring of growth 
condition in which makes the process complicated and unattractive 
commercially (Chandra et al., 2007). Hamisan et al. (2009) did 
some of the comparative studies conducted to show the potential 
of biological pretreatment over chemical pretreatment.
 Besides, the growth of fungi attacking and altering the OPEFB 
structure has also been done to demonstrate how the microorganism 
acts on lignocellulosic biomass as shown in Figure 9. Dense mycelia 
of Botryosphaeria rhodina UPM3 can be observed on the OPEFB 
fibre on 5th day of fermentation (Figure 9c). From viewing under 
SEM, the mycelia of B. rhodina UPM3 was found to be attached 
to OPEFB mainly on its pores and craters. Several observations 
have shown that Botryosphaeriaceae fungi infect the host plant via 
lenticels, stomata or openings. Therefore, this finding indicates that 
craters on the OPEFB surface play a vital role for fungal attachment. 
The mycelia network of B. rhodina UPM3 was of relatively high 
mass on the final day (7th day) of SSF and covered up all the 
area of OPEFB (Figure 9d). Indeed, SSF resembles the natural 
environment of fungus cultivation and thus making the resultant 
mycelia morphology more favourable for enzyme formation (Bahrin 
et al., 2012b; Bahrin et al., 2011).
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Figure 9  Scanning electron micrograph of OPEFB fibre fermented 
with B. rhodina UPM3 for (a) 0, (b) 3rd, (c) 5th and (d) 7th day of SSF 

(Source: Bahrin et al., 2011)
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 Search on efficient pretreatment methods for lignocellulosic 
biomas is extensively being done in our research activities. Current 
data are as shown in Table 1.  Among all the pretreatment processes, 
chemical pretreatment shows the best lignin degradation capability, 
with fast and low energy consumption, which is more efficient 
compared to other pretreatment methods. However, chemical 
pretreatment is not considered to be implemented in the production 
line since it is not environmental friendly. The acid or alkaline used 
in the process needs to be neutralized before being discharged to the 
environment. Therefore, improvement on the physical and biological 
pretreatments has become a new focus for the pretreatment of 
lignocellulosic biomass.
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 A rough classification of the pretreatment methods can also be 
made according to the following (Galbe and Zacchi, 2007):

i. Acid-based methods, i.e. pretreatment at low pH, resulting in 
hydrolysis of the hemicellulose to monomer sugars and hence 
minimizing the need for hemicellulases.

ii. Methods working close to neutral conditions, e.g. steam 
pretreatment and hydrothermolysis, causing solubilization 
of most of the hemicellulose due to the acids released from 
the hemicellulose, e.g. acetic acid, while not usually resulting 
in total conversion to monomer sugars. This thus requires 
hemicellulases acting on soluble oligomer fractions of the 
hemicelluloses.

iii. Alkaline methods, that leaves a part of the hemicellulose, or in 
the case of ammonia fibre explosion, almost all hemicellulose 
in the solid fraction. This then requires hemicellulases acting 
both on solid and on dissolved hemicellulose. An alternative 
is to perform acid hydrolysis on this fraction, for instance 
after removal of the cellulose by enzymatic hydrolysis. This 
affects, of course, not only the method that should be used for 
assessment of the pretreatment but also the cost of the overall 
hydrolysis of the carbohydrates. 
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DEVELOPMENT OF ENZYME COCKTAIL 
SYSTEMS FOR BIOSUGARS PRODUCTION

The enzymes involved in degradation of lignocellulosic materials 
are very complex due to the complex structure of the lignocellulosic 
biomass itself. Since lignocellulosic biomass consists of lignin, 
hemicellulose and cellulose as its major components, full complex 
enzymes system is required to digest those components into 
simple sugars. Lignin requires a set of ligninolytic enzyme while 
hemicellulose requires a set of cellulolytic enzyme. Ligninolytic 
consisted of three major enzymes (i.e.: lignin peroxidase, 
manganese peroxidase and laccase) as mentioned by Zanirun (2009) 
while cellulolytic enzyme consists of endoglucanase, exoglucanase 
and β-glucosidase (Ibrahim, 2013, Ibrahim et al., 2012). However, 
some other enzymes like mannanase and xylase are still involved 
in degrading the lignocellulosic biomass (Abd-Aziz et al., 2001, 
Ab. Razak, 2006). The enzyme produced by Aspergillus niger from 
palm kernel cake (PKC) has been profiled by Ong et al. (2004) and 
Gan (2005) which characterized mannanase as one of the enzymes 
produced in the system. The production has been statistically 
optimised (Abd-Aziz et al., 2008) and extended using mixture of 
microorganisms, which are A. niger and Sclerotium rolfsii (Abd-
Aziz et al., 2009). Since mannase is only involved in converting 
mannose into glucose, detailed study on the enzyme system for 
complete lignocellulosic biomass degradation has been continued.

Ligninolytic Enzymes 

The widely organisms to degrade lignin are the wood rotting 
fungi (Zanirun, 2009). They can be divided into three groups 
according to the morphology of the decay they caused in wood. 
White rot fungi is the most prominent fungi having the ability to 
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degrade wood in nature. Their approach is to delignify or modify 
the lignin structure so that the enzyme can access the cellulose 
and hemicellulose embedded within the lignin matrix.  Lignin is 
an insoluble, high molecular weight polymer, so the initial steps 
in its biodegradation by white rot fungi must be extracellular. 
The presence of three major extracellular enzymes namely lignin 
peroxidase, manganese peroxidase and laccase are significantly 
involved in lignin degradation processes (Lovitt et al., 1996; 
Ang, 2007). They are non-specific enzymes capable of degrading 
natural aromatic polymers of lignin. Generally, there are three 
major challenges faced by the white rot fungi in association with 
the facts that:

i. Lignin polymer is large, hence the ligninolytic system must be 
secreted extracellularly, 

ii. Lignin structure is comprised of inter-unit C-C and ether bond 
C-O-C, therefore the degradation mechanism must be oxidative 
rather than hydrolytic, and

iii. Lignin polymer is stereo-irregular.

 An intensive search for the extracellular enzymes associated 
with lignin degradation led to the discovery of extracellular 
peroxidases in Phanerocahete chrysosporium (Glenn et al., 1983). 
Now it is thought that the ligninolytic system of P. chrysosporium 
consists of a pool of enzymes, namely lignin peroxidase, manganese 
peroxidase and H

2
O

2
-producing enzymes. Another lignin degrading 

enzyme, laccase, is not produced by P. chrysosporium, but it is 
formed by many other white rot fungi (Zanirun, 2009). Lignin 
degrading enzymes are also produced by bacteria as reported by 
(Rahman et al., 2013). 
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Lignin Peroxidase (LiP)

In 1983, two groups announced the discovery of an extracellular 
H

2
O

2
-requiring enzyme activity that catalyzed several of the 

reactions formerly obtained with intact cultures of P. chrysosporium 
(Glenn et al., 1983). Lignin peroxidase (once called ligninase) (EC 
1.11.14) has been purified and characterized (Tien and Kirk, 1984). 
The enzyme is a glycoprotein that contains about 15% carbohydrates 
and an iron protoporphyrin IX (heme) as a prosthetic group. It has 
a molecular weight of 41000-42000 Da and a pH optimum of 2, 
but the enzyme is unstable at this low pH. The lignin peroxidase 
family contains multiple isoenzymes. The number of isoenzymes 
reflects differences in strains, culture conditions and purification/
fractionation techniques (Kirk and Farrell, 1987). The enzyme can 
be assayed by the oxidation of veratryl alcohol to veratraldehyde, 
the formation of which is monitored at 310 nm (Tien and Kirk, 
1984). Lignin peroxidase has no substrate specificity, reacting with 
a wide variety of lignin model compounds and related compounds 
(Zanirun, 2009). Lignin peroxidase can oxidize both phenolic and 
non-phenolic lignin related compounds resulting in cleavage of 
the Cα - Cß

 bond, the aryl Cα bond, aromatic ring opening, phenolic 
oxidation and demethoxylation. 

Manganese Peroxidase (MnP)

Manganese peroxidase (EC 1.11.13) is also a he me peroxidase 
and it forms a family of isoenzymes. Similarly to LiP they are also 
glycoproteins, with one iron protoporphyrin IX group per mol of 
enzyme. The molecular weight is approximately 46000 (Glenn and 
Gold, 1985). The MnP can oxidize a variety of phenols and dyes 
(Kuwahara et al., 1984). The catalytic cycle of MnP is esentially 
the same as for LiP with the exception that Mn(II) is necessary to 
complete the cycle.
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Laccase

Laccase (EC 1.10.3.2) is a copper-containing polyphenol oxidase 
enzyme which reduces oxygen by the oxidation of a phenolic 
substrate. Substrate oxidation by laccase is a one-electron reaction 
generating a free radical (Ang, 2007). As LiP and MnP, laccase gives 
both polymerization and depolymerization of lignin (Bourbonnais 
and Paice, 1990). It has been shown that the artificial laccase 
substrate, ABTS has the capacity to act as a mediator, enabling the 
oxidation of non-phenolic lignin model compounds that are not 
laccase substrates on their own (Bourbonnais and Paice, 1990). 
Bleaching of lignin-containing pulps can also be achieved with 
laccase and by the use of low-molecular weight redox-mediators 
(such as hydroxybenzotriazole) (Call and Mücke, 1995). According 
to recent results, a laccase with a molecular weight of 46500 Da 
was found in P. chrysosporium. The molecular weight is the same 
as that of MnP and, unless it contains copper in the structure, it 
could probably be a form of MnP (Zanirun, 2009). 

Enhancement of Ligninolytic Enzymes Activities

In essence, the important characteristics of extracellular, oxidative 
and unspecific enzymes catalyse initial depolymerization of 
lignin. Mediators are the actual oxidants responsible for lignin 
degradation and can penetrate deeply into the lignocellulosic matrix 
due to their small size. They are defined as low-molecular-weight 
substrates that facilitate enzymatic oxidation by generating stable 
high-potential intermediates which are later involved in chemical 
(non-enzymatic) reactions with other compounds, following 
diffusion-controlled kinetics. Therefore, an approach of biological 
treatment on OPEFB for partial removal or modification of its lignin 
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structures has been on going over the past years which started with 
the isolation and screening of microorganisms in our laboratory, 
followed by optimization of ligninolytic and enzyme productions. 
Previously, Zanirun et al. (2009) conducted the optimization 
of lignin peroxidase (LiP) enzyme from Pycnoporus sp. using 
2-level factorial design and the results showed that 51 U/L of LiP 
was successfully achieved at 24mM nitrogen concentration, pH 
3.5, agitation speed at 110 rpm and veratryl alcohol (1 mM) as 
inducers.  In the meantime, an idea of using crude ligninolytic 
enzyme produced from locally isolated white rot fungi namely P. 

sanguineus UPM4 as a preferred pretreatment method to divert 
the usage of chemical is now becoming our major intention. The 
performances of the collected crude enzymes were compared with 
the addition of synthetic mediator of HBT and the result of cellulose 
hydrolysis is as shown in Figure 10 (Unpublished data). Up to 30 g/L 
of sugar was produced with HBT addition compared to application 
of crude ligninolytic enzymes alone.  The addition of mediator to 
the ligninolytic crudes played a big role in enhancing the enzymatic 
hydrolysis of cellulose as the mediators will increase the binding 
sites of the ligninolytic enzymes to lignin surfaces and therefore 
modifying the structure and partial removal. Our current mission to 
develop green biological approaches with milder processes could 
benefit the environment against chemical treatment. The potential of 
ligninolytic enzymes as biological treatment to enhance enzymatic 
hydrolysis of cellulose could be enhanced further since there is 
room for improvement.
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Figure 10 The effect of HBT as mediator on the enzymatic hydrolysis 
of OPEFB (Unpublished data)

Cellulolytic Enzymes

Cellulase, also known as cellulolytic enzyme refers to a class of 
enzymes produced by fungi, bacteria and protozoa that is able 
to hydrolyze the polymer structure of cellulosic materials into 
its fragments or monomers. Cellulase consists of three types of 
enzymes i.e.: endoglucanase (EC 3.2.1.4), exoglucanase (EC 
3.2.1.91) and β-glucosidase (EC 3.2.1.21) that work synergistically 
to degrade the complex cellulosic structure into its monomers 
(Mathew et al., 2008). The mechanism of cellulose degradation 
by cellulase is shown in Figure 11. The endoglucanase or 1,4-β-D-
glucangluconohydrolyase acts on carboxy methyl cellulose (the 
crystalline region of lignocellulosic biomass) that randomly 
cleaves the cellulose chain yielding cello-oligosaccharides and 
few amounts of glucose monomers. The exoglucanase or 1,4-β-D-
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glucancellobiohydrolase acts on the microcrystalline section of non-
reducing end of cellulose producing two or three molecules structure 
of glucose known as cellobiose. The cellobiose is further simplified 
by 1,4-β-glucosidase that facilitates the hydrolysis of cellobiose to 
glucose monomers. These three enzymes target the specific cleavage 
of β-1,4-glycosidic bond (Wood and McCrae, 1979).

Figure 11  A simplified scheme of the current view on the enzymatic 
degradation of cellulose, involving cellobiohydrolases (CΒH), 

endoglucanases (EG), type I and type II PMOs (PMO1 and PMO2, 
respectively). Cellobiose dehydrogenase (CDH) is a potential electron 

donor for PMOs. EGs and PMOs cleave cellulose chains internally 
releasing chain ends that are targeted by CBHs. CBHs generate 

cellobiose or oxidized cellobiose that are subsequently hydrolyzed by 
by β-glucosidase 

(Source: Dimarogona et al., 2012) 
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Exoglucanase

Exo-1,4-β-D-glucanase is also recognized as cellobiohydrolase, 
exocellulase, Avicelase or FPase. Avicelase and FPase are named 
according to the substrates used in the enzyme assay to measure 
the activity (Wood and Bhat, 1988). Exoglucanase is very crucial 
for hydrolyzing microcrystalline cellulose and very specific in 
cleaving β-1,4 linkages of the cellulose chain. However, these 
enzymes are inactive on cellobiose and substitute celluloses. Both 
endoglucanases and exoglucanases are active on amorphous region 
of cellulose. However, only exoglucanase can degrade crystalline 
region of cellulose chain.
 The class I enzymes CBH I (from Trichoderma reesei and two 
endoglucanases E4 and E6 from Thermobifida fusca) prefer to 
hydrolyse the cellulose polymer from the reducing end, whereas 
class II or CBH II (CBH II from T. reesei and E3 from T. fusca) 
liberate cellobiose from the non-reducing end (Barr et al., 1996). 
In T. reesei cellulase system, CBH I and CBH II are the major 
components from the total cellulase protein, constituting 60% and 
20%, respectively. The principal product of CBH I and CHB II 
activity is cellobiose which consequently inhibits the activity of 
cellobiohydrolases and endoglucanases.

Endoglucanase

Endoglucanases react very particularly to break down the 
internal β-1,4 glycosidic from amorphous, swollen, substituted 
celluloses (carboxymethyl and hydroxylmethyl cellulose) and 
cello-oligosaccharides. Endo-1,4-β-D-glucanase is also known 
as endoglucanase, endocellulase and CMCase (Wood and Bhat, 
1988). The most applied enzyme assay to analyse this enzyme 
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uses carboxymethyl cellulose as a substrate and thus this enzyme 
is described as CMCase. The specificity of endoglucanases towards 
crystalline cellulose and cellobiose is very poor. Bhat et al. (1993) 
reported remarkable differences between endoglucanases activities 
by Penicillium pinophilum when utilizing substituted, unsubstituted 
and reduced cello-oligosaccharides as substrates.
 Multiple endoglucanases are produced by bacteria and fungi 
with a broad range of substrate specificity to hydrolyse cellulosic 
material efficiently. T. reesei is capable of secreting five types 
of endoglucanases, designated as EGI, EGII, EGIII, EGIV, and 
EGV. Endoglucanases III and IV were only active on cellotriose 
and higher cello-oligosaccharides, while endoglucanases II and V 
required 4-6 glucose residues to be activated (Lynd et al., 2002).

β-Glucosidase
β-Glucosidases hydrolyze soluble cellodextrins and cellobiose 
to glucose. These enzymes have been recognized as the enzymes 
that prevent cellobiose accumulation and cellulase inhibition. 
β-Glucosidase enzyme can be categorized as either aryl β-D-
glucosidases (hydrolyzing exclusively aryl-β-D-glycosides), 
cellobiases (hydrolyzing diglucosides and cello-oligosaccharides) 
or β-glucosidases with broad substrate specif icities. Most 
β-glucosidases exhibit wide substrate specificities and hydrolyse 
aryl, alkyl β-D-glycosides, β-1,1-, β-1,2-, β-1,3-, β-1,4- and β-1,6-
linked diglucosides, as well as substituted and unsubstituted cello-
oligosaccharides. An attractive finding showed that intracellular 
β-glucosidase from S. thermophile was found to be an aryl-β-
glucosidase, whereas two extracellular β-glucosidases from the 
same organism hydrolyzed only cellobiose (Bhat et al., 1993).
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Cellulolytic Enzyme Cocktail System

The search of suitable cellulase for lignocellulosic material 
degradation is extensively carried out in our research activities. 
Numerous microorganisms have been isolated and characterized to 
find the best cellulase producer. Thermophilic cellulase producing 
bacteria has been isolated from compost made of OPEFB and 
POME sludge. This thermophilic bacteria is aimed to degrade 
lignocellulosic materials at high temperature (Baharuddin et al., 
2010). A locally isolated fungus A. niger EB1 has been employed 
to produce crude cellulase from OPEFB (Noratiqah et al., 2013). 
Mannanase production by A. niger FTCC 5003 from oil palm 
kernel cake has also been carried out (Ong, 2006). Two strains (T. 

asperellum UPM1 and A. fumigatus UPM2) have been isolated from 
OPEFB by Abu Bakar et al. (2010). Those isolated microorganisms 
were tested on different types of lignocellulosic biomass using 
submerge (SmF) and/or solid-state fermentation (SSF). For 
example, the production of cellulase from by A. fumigatus SK1 
through SSF has been done by Ang et al. (2013). Various types of 
substrates have and currently being tested for cellulase production as 
well as for enzymatic hydrolysis, i.e.: POME solid (Wong, 2005), oil 
palm kernel cake (Ong, 2006), SPR (Linggang et al., 2012), OPDC 
(Razak et al., 2012), OPEFB (Bahrin et al., 2011, Abu Bakar et al., 
2010, Ibrahim et al., 2013, Zanirun et al., 2014) and OPT (Ang et 

al., 2013). Difficulties occurred since different microorganisms will 
act differently on different substrates to produce cellulase. Out of 
many techniques, substrates and strains that have been tested, two 
fungi strains (T. asperellum UPM1 and A. fumigatus UPM2) were 
found to produce significantly higher cellulase activities compared 
to others. Therefore, extensive research has now being conducted to 
explore the capabilities of these two strains for cellulase production.
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Fungi T. asperellum UPM1 and A. fumigatus UPM2 have been 
deposited for patent filing at DSMZ with code numbers of DSMZ 
24606 and DSMZ 24607, respectively. In our findings, T. asperellum 

UPM1 produced higher β-glucosidase than FPase and CMCase 
while A. fumigatus UPM2 produced higher CMCase and FPase than 
β-glucosidase. The importance of the interaction between cellulase 
components (CMCase, FPase and β-glucosidase) had been studied 
by Ibrahim (2013). Variation of cellulase activities produced by 
two different fungi strains has lead a research on developing crude 
cellulase cocktail that can improved cellulose degradation. The 
combination of cellulase from T. asperellum UPM1 and A. fumigatus 

UPM2 has produced better cellulase cocktail system compared to 
cellulase from one strain. The process to produce this crude cellulase 
cocktail and its composition has been patented (Abd-Aziz et al., 
2011). The performance of this patented crude cellulase cocktail 
was comparable with the commercial purified cellulase available 
in the market (Celluclast 1.5 L produced by Novozyme, Denmark). 
The comparison was based on the specific enzyme activity and 
the amount of biosugars produced after hydrolysing the pretreated 
OPEFB, with data as shown in Table 2.
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The rate of enzymatic hydrolysis on cellulosic material by cellulase 
is determined by the amount of enzyme adsorbed on cellulose 
surface area. Thus, many studies on adsorption kinetic have been 
explored to estimate the cellulase action on cellulose. However, 
those models including Michaelis-Menten kinetics are not able to 
specifically determine the exact hydrolysis model of cellulase. This 
is because the structural features such as surface area, crystallinity 
and the presence of other substances like lignin differ from one kind 
of lignocellulosic biomass to another. Inhibition of the cellulase 
action by reaction products was also reported which lead to the 
multiplicity and complexity of the cellulase mechanism (Ibrahim, 
2013). Reese (1977) concluded that enzyme adsorption on cellulose 
is dependent on concentration of enzyme, nature and the amount of 
substrate available, surface area, physical properties of the enzyme 
and hydrolysis environment. Yang et al. (2011) mentioned that the 
cellulase action is also dependent on enzyme-related factors like 
enzyme source, product inhibition, thermal inactivation, activity 
balance for synergism, specific activity, nonspecific binding, 
enzyme processibility and enzyme compatibility. However, 
according to our findings (Ibrahim et al., 2013, Linggang et al., 
2012, Razak et al., 2012, and Abu Bakar et al., 2012), the cellulases 
work differently when different substrates were used. This is due to 
the complexity of the cellulose structure as well as the complexity 
of the cellulase system. 
 The rate of adsorption is proportional to the amount of cellulase 
in the system. Increase in enzyme concentration will increase the 
number of cellulase that bind to the cellulose structure and allow 
for rapid degradation (Walker and Wilson, 1991).  However, a 
concrete conclusion on the nature of the substrate’s structural 
features is difficult to be determined due to the variation of the 
lignocellulosic structure. Moreover, different pretreatments on 



❚❘❘ 42

Lignocellulosic Biofuel: A Way Forward

the lignocellulosic biomass further contribute towards variation 
of structural features and thus varying the hydrolysis performance 
obtained (Bahrin, 2012). During hydrolysis, the cellulosic material 
undergoes fragmentation which increases the surface area and 
changes the crystallinity percentage of the substrate (Bahrin et al., 
2012b), which differ according to the type of cellulosic material 
and complexity of the cellulase system. Besides, the soluble matter 
released during the pretreatment and/or during hydrolysis has been 
suggested as one of the inhibitory compounds towards the action 
of cellulase. Those compounds include the chemicals being used 
during pretreatment, and the phenolic and aromatic compounds 
released during the degradation (Razak et al., 2012; Linggang et al., 
2012), which differ based on the type of lignocellulosic biomass. As 
synergistic effects between cellulases are influenced by the nature of 
the substrate, such as chemical composition, it is often challenging 
to compare research results in literature using different substrates. 
 In terms of physical properties of the cellulase, the endoglucanase 
and the exoglucanase (so called cellobiohydrolyase - CBH) have a 
catalytic domain (CD) and cellulose-binding domain (CBD). The 
CBD functions to make sure the enzyme interact with cellulose at 
the correct orientation while CD is connected with CBD to help 
them bind with the cellulose (Binod et al., 2011). Removing one of 
these domains from the cellulase will impair the hydrolysis action. 
The cellulase domain can also be interfered by the presence of 
inhibitory compounds like furfural, acids and phenolic substances. 
Endoglucanase and CBH account for most of the cellulase activity. 
However, a sufficient amount of β-glucosidase is needed in order 
to reduce the inhibitory effect of cellobiose to endoglucanase and 
CBH (Walker and Wilson, 1991). A synergistic enzyme effect 
between the cellulase components was revised by Yang et al. (2011). 
Since cellulase components are different when employing different 
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microorganisms, such synergism effect is dependent on cellulase 
source and even substrate feature. For example, the interaction 
between the CD and CBD was observed on cotton fibre but was 
not on microcrystalline cellulose (Din et al., 1995). In addition, 
although it was found that β-glucosidase is a rate-limiting enzyme 
in hydrolysis (Ibrahim et al., 2013, Linggang et al., 2012), a 
sufficient amount of endoglucanase and CBH are also important. 
Duff and Muray (1996) reported that a ratio of β-glucosidase to 
CBH in the range of 0.12-1.5 gave the best hydrolysis performance. 
However, recent study suggested that the optimal enzyme ratios are 
also affected by the type and source of cellulosic material and the 
pretreatment that had been applied on it (Yang et al., 2011).
 The hydrolysis performances by crude cellulase produced by 
T. asperellum UPM1 and A. fumigatus UPM2 act on different types 
of local lignocellulosic biomass are shown in Table 3. Although all 
the substrates were pretreated using the same method (using 2% 
NaOH with autoclaved), however, each of them required different 
amount of cellulase activities. 

Lignocellulolytic Enzyme Cocktail System

The crude lignocellulolytic enzyme cocktail is a mixture of crude 
ligninase enzyme extract and crude cellulase cocktail synthesized 
from T. asperellum UPM1 and A. fumigatus UPM2 (Ibrahim et 

al., 2013 and Unpublished data). Enzymes involved in lignin 
degradation are commonly referred as ligninase, while cellulase 
refers to enzymes responsible for cellulose hydrolysis. Ligninase 
will act on lignin to increase cellulase accessibility towards 
cellulose. Then, cellulase will further breakdown cellulose into 
simpler sugar monomers. Lignin is a complex structure made up 
of heteropolymer consisting of three phenyl propionic alcohols 
monomers which are coniferyl alcohol, coumaryl alcohol, and 
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sinapyl alcohol (Kumar et al., 2009). Common ligninase types 
involved in lignin degradation are phenol oxidases, peroxidases, and 
dehydrogenases. Phenol oxidase works by oxidizing phenolic parts 
in lignin using oxygen as an electron acceptor. The most studied and 
dominant phenol oxidase is laccase, a multicopper enzyme which 
falls into phenol oxidase enzyme category as it attacks phenolic 
parts in lignin. Meanwhile, peroxidases have Fe-containing haem 
prosthetic group that uses H

2
O

2
 as an electron acceptor during 

redox process. Among the three phenyl propionic alcohol units 
of lignin, coniferyl alcohol is more favourable to be oxidized by 
peroxidases compared to sinapyl alcohol (Ralph et al., 2004). In 
addition, dehydrogenases transfer hydride groups from a substrate 
to an acceptor such as NAD+ (Burns et al., 2013). The advantage 
of using crude lignocellulolytic enzyme cocktail is the treatment 
time is expected to be shorter and hence making the biological 
treatment process simpler in one vessel within a single step or 
one go simultaneously, in turn making the process of biosugar 
production easier. 

CONVERSION OF PRETREATED 
LIGNOCELLULOSIC BIOMASS TO BIOSUGARS

Conversion of pretreated lignocellulosic biomass into biosugars can 
be done by three different methods, which are chemical, physical 
and biological processes. Many studies have been intensively 
conducted to find the most effective method to produce higher yield 
of biosugars, while at the same time being environmental friendly. 
Biological method is the most promising method, as the process 
employs microorganisms and/or enzymes to degrade the biomass 
and produce biosugars. 
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 In the hydrolysis of cellulosic component in lignocellulosic 
biomass, cellulase, which contains exoglucanase, endoglucanase 
and β-glucosidase are responsible in converting carbohydrate into 
biosugars. In the biosugar hydrolysate, there are several types of 
sugars, which are glucose, arabinose, rhamnose, maltose and xylose 
(Razak et al., 2012). The composition of each biosugar differs 
according to biomass. However, in general, glucose was found to 
be the most abundant hexose in the hydrolysate. This happens due 
to the major components of lignocellulosic biomass is cellulose. 
 A study conducted by Ibrahim et al. (2013) has reported that 32.2 
g/L biosugars was recovered (73.2% of hydrolysis percentage) from 
OPEFB using 5% (v/v) enzyme loading, while 4.37 g/L polyoses 
(biosugars) has been obtained from OPDC with 69.4% hydrolysis 
percentage (Razak et al., 2013). Different results obtained might 
be due to the amount of lignin present in the biomass. As for the 
OPEFB and OPDC, the lignin contents were 12.3% and 16.6%, 
respectively (Ibrahim et al., 2013; Razak et al., 2013), while SPR 
is 4.9% (Linggang et al., 2012). On the other hand, this could be 
reflective of the cellulosic materials contained in the biomass, 
since OPEFB has higher potential sugars as compared to OPDC. 
Although fine structure like dried POME was used, the biosugars 
obtained were not as higher as those in OPEFB (Wong et al., 2008). 
Roslan et al. (2011) has produced the highest glucose concentration 
(0.38 g/g rice straw) by using 20 cycle disc milled with thermal 
of sample. However, the aforementioned authors claimed that, the 
value of hydrolysis percentage was slightly higher than cellulose 
percentage present in the rice straw. Thus, it was suggested that 
glucose recovered originated from the degradation of hemicellulose.
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BIOCONVERSION OF BIOSUGARS TO BIOFUEL

For the past few years, the world has been facing the problems 
of global warming and climate change, instability petrol prices, 
depletion of petroleum reservoir as well as serious environmental 
pollution due to consumption of fossil fuel for generating energy 
(Garcia et al., 2011). This has happened due to the increase in the 
number of human population, which subsequently contributes to 
higher demand in energy for industrial activities, transportations 
and households’ energy consumption. Utilisation of fossil fuel has 
been reported as the major contributor to the increase of carbon 
dioxide percentage in the atmosphere (Florides and Christodoulides, 
2009). This phenomenon has contributed to the increase of world 
temperature that causes several of the worlds’ environmental 
problems (Intergovernmental Panel on Climate Change, 2007). 
Thus, the challenge to develop alternative energy that is renewable, 
clean and environmental friendly has been tackled by many 
researchers in order to shape the future of energy technology. The 
importance and overview of biofuel production in Malaysia have 
been described by Abd-Aziz and Ibrahim (2014). To this aim, 
biomass can generate a variety of value added products, including 
biofuel, which can serve as an alternative energy supply for the 
world. The recent interest in this biorefinery concept is based on 
the mitigation of climate change by substituting the biomass energy 
for petroleum or other fossil-fuel energy (Abd-Aziz et al., 2013). 
Currently, bioethanol, biobutanol and biohydrogen are examples 
of biofuels that offer potential based on the following present 
research data.
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Bioethanol

Bioethanol produced from renewable biomass is attracting global 
attention as an alternative energy source. Lignocellulosic biomass 
is the most promising feedstock considering its great availability 
and low cost. Due to these facts, more studies and collaborations 
are required to improve biotechnological production of bioethanol 
from lignocellulosic biomass with research being done from the 
upstream level to downstream. On our part, a recombinant yeast 
inserted with glucoamylase and α-amylase was developed to 
produce bioethanol from gelatinised sago starch (Abd-Aziz et al., 

2001; Ang et al., 2001) and the characteristics of theses enzymes 
have been determined to explain their mechanism in hydrolysis 
of starch to glucose for bioethanol production (Ang et al., 2001). 
It has first been developed to produce biosugars from gelatinised 
sago starch (Nazri, 2004) before those biosugars are subjected for 
bioethanol production through direct fermentation (Ang, 2001, Ang 
et al., 2002), with further study on the effect of carbon to nitrogen 
ratio (Abd-Aziz et al., 2001).
 One of the most challenging factors in second generation of 
bioethanol from lignocellulosic biomass is the high cost of cellulase 
enzymes. Nevertheless, crude cellulolytic enzymes produced 
from lignocellulosic feedstock help to reduce the cost of enzyme 
production significantly. OPEFB was used as a substrate in the 
production of cellulase by locally isolated fungi, T. asperellum 
UPM1 and A. fumigatus UPM2 in submerged fermentation (Abu 
Bakar, 2011; Abd-Aziz et al., 2008). Crude cellulase cocktails from 
both fungi produced 8.37 g/L of biosugars with 0.17 g/g yield during 
saccharification process. The biosugars from OPEFB hydrolysate 
were successfully fermented into bioethanol by Baker’s yeast with 
0.59 g/L ethanol, corresponding to 13.8% of the theoretical yield 
(Abu Bakar et al., 2012) as shown in Table 4. Besides, bioethanol 
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production has also been produced from biosugars obtained 
from hydrolysis of OPEFB in SSF as reported by Bahrin (2012). 
Optimization of bioethanol production has been conducted by 
Roslan (2011) using rice straw as substrate. 
 Sago hampas consists of lignocellulosic component and of 
additional interest, this biomass also has residual starch fraction that 
can be recovered. On dry basis, sago hampas contains 58% starch, 
23% cellulose, 9.2% hemicellulose, and 4% lignin (Linggang et 

al., 2012). In one attempt by Awg-Adeni et al. (2013), the starch 
from sago hampas was hydrolysed enzymatically for three cycles. 
However, to enhance concentration of glucose from 7% substrate 
load of sago hampas is currently not possible. Thus, an alternative 
method termed as cycles I, II, and III which involves reusing the 
hydrolysate for subsequent enzymatic hydrolysis process was 
introduced. Greater improvement of glucose concentration (138.45 
g/L) and better conversion yield (52.72%) were achieved with the 
completion of three cycles of hydrolysis. In comparison, cycle I 
and cycle II had glucose concentration of 27.79 g/L and 73.00 
g/L, respectively. The glucose obtained was subsequently tested as 
substrate for bioethanol production using commercial Baker’s yeast. 
The fermentation process produced 40.30 g/L of ethanol after16 h, 
which was equivalent to 93.29% of theoretical yield based on total 
glucose existing in fermentation media.
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Biobutanol

Butanol represents the next significant change required to meet the 
growth in demand for environmentally responsible and renewable 
fuel for transportation. Butanol (C

4
H

10
O) or butyl alcohol is 

an alcohol that can be used as a solvent or fuel, which can be 
produced by microorganisms through acetone-butanol-ethanol 
(ABE) fermentation (Ibrahim, 2013). Compared to other alcoholic 
fuels (ethanol and methanol), butanol has a higher heating value. 
Being a four carbon alcohol, it contains 25% more energy than 
ethanol which reduces fuel consumption and makes better mileage 
obtainable. It has lower volatility rate, less ignition problem and 
higher viscosity, properties which are almost similar to those of 
gasoline. Thus, it can be used in the existing engine system without 
any modifications (Jin et al., 2011; Durre, 2007). Butanol can also 
be distributed through the current pipeline system because it is 
less corrosive compared to ethanol and methanol (Durre, 2007). 
These properties of butanol which as noted, makes it better than 
other alcoholic fuels and are almost similar to those of gasoline, 
thus making it a great renewable energy source if the production 
of butanol can be produced at lower cost.
 Several approaches have been tested to produce biobutanol 
from lignocellulosic biomass by different strains of Clostridium 

acetobutylicum which including P262, NCIM 8502 (Madihah, 
2004), and ATCC824 (Ibrahim, 2013; Razak, 2013; Linggang, 
2013). Some local isolates like C. butyricum EB6 has also been 
tested for biobutanol production (Ibrahim et al., 2012). In the 
early stages, biobutanol was produced from sago starch in the 
presence of partially purified a-amylase and glucoamylase via 
direct fermentation (Madihah et al., 2001a) and its characteristics 
have been determined (Madihah et al., 2000). In addition to this, 
the system was also used on gelatinised sago starch (Madihah et 
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al., 2001b), of which both are considered first generation biofuel. 
Now, production has been continued using lignocellulosic biomass 
instead as substrate. Three potential substrates such as OPEFB 
(Ibrahim, 2013), SPR (Linggang, 2013) and OPDC (Razak, 2013) 
have been used to produce biobutanol. All of these three types of 
lignocellulosic biomass have shown a comparable biobutanol yield, 
between 0.10-0.14 g/g of biosugars. Optimization on biobutanol 
production has been done using biosugars from OPDC with the 
biobutanol yield of 0.11 g/g and biobutanol concentration of 6.04 
g/L (Razak et al., 2013). Biobutanol production in 2-L bioreactor 
has also been tested using our local lignocellulosic biomass 
(Mohamad Remli, 2014). However, although many researches have 
been done, some improvements are still necessary in order to make 
this type of biofuel reliable in the industry. Some of the challenges 
include the acid inhibition phenomenon mentioned by Ibrahim et 

al. (2012), low biobutanol yield (Ibrahim et al., 2012), presents of 
toxic components (i.e.: furfural and phenolic compound) released 
from hydrolysis of lignocellulosic biomass which inhibit the cell 
growth (Razak et al., 2013) and parameters variation (Linggang et 
al., 2013). 
 Our current approach is through simultaneous saccharification 
and ABE fermentation. This approach is to reduce the number of 
steps involved in the production of biobutanol. A usual approach 
is by conducting saccharification and ABE fermentation separately 
which involves substrate pretreatment, saccharification, sugar 
recovery and fermentation. Each of the processes contributed to 
significant time consumption and cost for materials and apparatus. 
Any combination of these processes into a single step or step that 
can be carried out simultaneously may reduce the cost and time.
The simultaneous process has been tested using pretreated OPEFB 
and sago pith residues (SPR) as substrate (Abd-Aziz et al., 2014). 
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Both substrates have undergone fermentation via both separate 
and simultaneous processes by employing C. acetobutylicum 

ATCC 824 as inoculum. It showed that, the biobutanol yield 
obtained from simultaneous process is comparable to those found 
in separate process with the values of 0.14-0.19 g/g and 0.10-0.18 
g/g for OPEFB and SPR, respectively (Abd-Aziz et al., 2014). Our 
calculation showed that, the overall yield (from raw material until 
final biobutanol production) is better when using simultaneous 
process (0.09 g/g) instead of separate process (0.06 g/g), with 
reduction in total time consumed from 12 days for separate process 
to 8 days for simultaneous process (Ibrahim et al., 2014). With these 
present data, biobutanol production has the potential to be our fuel 
for the future, provided improvements are made from time to time.

Biohydrogen

Besides bioethanol and biobutanol, biohydrogen production 
from biosugars has been reviewed as one of the most promising 
technologies in its field. Jenol (2014) has demonstrated the study 
on biohydrogen production of sago biomass (sago hampas and 
SPR) hydrolysate by C. butyricum A1 and C. butyricum EB6, both 
of which are local isolates. It was noted that 2.23 mol of H

2
/mol of 

glucose has been yielded from the fermentation by using 10 g/L-
glucose contained in SPR hydrolysate, which is higher than a well-
known biohydrogen producer, C. butyricum EB6. Sago hampas has 
produced even higher yield which is 2.60 mol of H

2
/mol of glucose. 

Previously, Chong et al. (2009) has reported that C. butyricum EB6 
produced 3195 mL/L-medium of biohydrogen from POME, which 
was similar as those obtained by Jenol et al. (2014) using the same 
strain. This is higher than biohydrogen produced by Ochrobactrum 
sp. EB2 using POME as substrates (Chung, 2007). Yusoff et al. 
(2009) has also conducted biohydrogen production from POME 
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but by a mixed culture of natural inoculum instead. Statistically 
analysis has also been done to optimise the fermentation condition 
for biohydrogen production by natural microflora in POME (Rasdi 
et al., 2009). The biohydrogen production has been done in 50-L 
bioreactor with the yield of 1130 NmL/L-POME. The advantage 
of using mixed culture of natural inoculum is that, the process 
can be done in non-sterile condition (Yusoff, 2010). Despite these 
production values, further findings are pivotal in development of 
biohydrogen as main form of bioenergy in future.
 In addition to isolation of local biohydrogen producers and 
testing on different types of lignocellulosic substrates, research 
on co-production of biohydrogen and biobutanol has also been 
conducted. This research is still in its infancy where it has so far 
been tested only on pretreated OPEFB. The idea of producing 
biobutanol and biohydrogen in one system has begun with the 
understanding that Clostridium sp. produces these two biofuels 
through their metabolic pathways, without interfering each other 
(Ibrahim, 2013). This is because the biohydrogen is produced 
during the acidogenic stage while biobutanol is produced during the 
solventogenic stage. With the aim of reducing biofuel production 
costs, co-production has also been tested in simultaneous 
saccharification and ABE fermentation process. From this, 2366 
mL/L medium of biohydrogen was produced from pretreated 
OPEFB in two-step process as compared to 2747 mL/L medium 
produced in simultaneous process (unpublished data). This value 
is also comparable to the biohydrogen production obtained by 
Jenol et al. (2014) and Chong et al. (2009), using SPR and POME 
substrates, respectively.
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The discovery of new enzymes in bacteria, fungi and yeast 
will enable the conversion of non-food plant biomass namely 
lignocellulosic biomass into simple sugars namely biosugars that 
can be subsequently fermented to produce biofuel. For sustainable 
production to be achieved, there is a need to optimise the energy 
output in order to minimize the negative impact on the environment, 
socially and economically. There is also a need to optimise the release 
of sugars from plant cell walls in agricultural and wood-industry 
wastes to produce fermentable feedstock that microorganisms can 
convert to biofuel. Developing robust microbial strains that can 
use these feedstocks will enable sustainable production of biofuel.
 With the use of enzymes, the breakdown of lignocellulosic 
biomass to release biosugars for fermentation becomes easier. In 
plants, the sugars are locked into the cell walls as long chain polymers 
in ways which currently do not fully understand, preventing effective 
digestion by enzymes. If we can understand better on how the plant 
sugars are arranged in the cell walls, we can select plants and match 
them with the most appropriate enzymes for more effective biofuel 
production. Improving the properties of lignin in lignocellulosic 
biomass will make it easier to produce biofuel (or bioenergy) from 
this material without detrimental effects on the yield or quality of 
the crop. Lignin is a strengthening and waterproofing polymer that 
encrusts the sugar-based polymers in plant cell walls, making them 
hard to access for biofuel production. Lignin and its by-products 
are also toxic to microorganisms used in fermentation. Feedstocks 
rich in lignocellulose require treatment with acids, alkalis or steam 
explosion methods to hydrolyse hemicellulose and break down 
lignin, enabling access to the cellulose by enzymes. The alternative 
process is to combine lignocellulosic enzyme system for one step 
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recovery of biosugars form lignocellulosic biomass with efficient 
removal of lignin. 
 To verify the efficiency of the technology, the next step is to 
implement all of these improvements in a pilot-scale process with 
all steps integrated into a continuous pilot plant. The simplified 
schematic diagram of all processes is shown in Figure 12. This will 
provide better data for assessment and for scale-up to a demo- or 
full-scale process. It will also give better information on how various 
pretreatment conditions will affect all the other processing steps, 
i.e. enzymatic hydrolysis, fermentation, downstream processing 
(extraction and purification) as well as product and co-product 
quality. Finally the conceptual of net energy output for biofuel 
production from lignocellulosic biomass through biorefining should 
be defined.
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