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Noor Akma Ibrahim

ABSTRACT
Statistics is the science of gaining and elevating insight from data. 
Data are pieces of information (often numerical but not always) 
gathered on people, objects or processes. The science of statistics 
involves all aspects of inquiry about data. Statistical modeling 
involves the finding of general laws from observed data, which 
amounts to extracting information from the data. Often the problem 
of main interest is to obtain a measure of both the complexity and 
the (useful) information in a set of data. Statistical modeling can 
be perceived also as a general framework for the application of 
statistical ideas. This presentation focuses on my experiences and 
endeavors in developing statistical models in order to capture the 
wide spectrum of data that arise from experiments, observations and 
other phenomena- producing data. Survival analysis is a collection 
of statistical models to explain the phenomena of survival data. 
The inherent property of survival data is the censored observation. 
There exists complexity in the censored mechanisms in which 
the usual survival models need to be modified or new survival 
models need to be developed to address this issue. One of the 
main objectives of survival analysis is to test the survival curves, 
and in the presence of partly interval-censored data goodness of fit 
tests have been developed for both parametric and nonparametric 
settings. Fundamental survival models do not include patients who 
are cured. In reality with the advancement of medical technology 
some patients are not susceptible to the disease (e.g. cancer) and this 
gives us the motivation to look into and consider models that will 
accommodate cure fraction for interval censored data with change 
point. When an event occurs and the death (example) of a patient 
can be due to several causes (risks), the survival model of interest 
is the competing risks model. A regression tree technique has 
been developed by using the subdistrbution function of competing 



risks to attain a better insight of a set of data. Bayesian is another 
approach that is fast gaining popularity in developing statistical 
models. Survival models with Bayesian approach considering 
several priors with right and interval-censoring are explored and 
developed. Regression Bayesian survival model with Jeffreys 
prior can be considered a frontier to Bayesian survival analysis. 
Simple and multiple linear regressions handle continuous response 
data with the assumption that the observations are independent. 
Substantial researches have been carried out to model scenarios 
of correlated data with binary and nominal response data. The 
models developed are based on Generalized Estimating Equation 
(GEE) for both semiparametric and nonparametric set-ups. Claim 
dependence model to include a third factor has been developed and 
its properties investigated. Due to certain limitations, the existing 
water quality index (WQI) measures which was based on experts 
opinions is very subjective in nature and does not provide an 
accurate picture of the water quality characteristics of a river. The 
subjectivity assumptions in developing WQI can be reduced by 
using statistical approaches. Moreover these statistical approaches 
can help to identify important parameters in determining the quality 
of a water body as well as the extent of their significance. Issues 
relating to this end this inaugural presentation.
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INTRODUCTION

“Statistics…the most important science in the whole world: for 
upon it depends the practical application of every other science 
and of every art; the one science so essential to all political and 
social administration, all education, all organization based upon 
experience, for it only gives the results of our experience.”
							                       

Florence Nightingale (1820-1910)

The world is complex and uncertainty exists. Indeed these 
complexities and uncertainties can be dealt with a variety of 
strategies that include scientific method and the discipline of 
statistics. Statistics helps to deal with uncertainty by quantifying it 
so that we can assess how reliable and likely the findings are. The 
scientific method helps to deal with complexity by reducing the 
systems to simpler components, defining and measuring quantities 
in the proper manner, and conducting experiments in which some 
conditions are held constant but varying others systematically. 
Beyond helping to quantify uncertainty and reliability, statistics 
provides insight that most people are unaware.
	 A well-defined study begins with a research question or 
hypothesis, devise a plan for collecting data, proceed to collect the 
data and analyze them, and then often make inference about how 
the findings generalize beyond the particular group being studied. 
Statistics concerns itself with all the phases of this process and 
therefore encompasses the scientific method.
	 A model is a representation for a particular purpose. Statistical 
models revolve around data. The intended use of a model should 
shape the appropriate form of the model and determines the sorts 
of data that can properly be used to build the model. Statistical 
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models can be used to describe, classify (or predict) and anticipate 
the consequences of interventions of the data. The appropriate form 
of a model depends on the purpose. For example, a model that 
diagnoses a patient as ill based on an observation of a high number 
of white blood cells can be sensible and useful. But that same model 
would give absurd predictions about intervention (Kaplan, 2009). 
The aim of a model is to capture aspects of a phenomenon that are 
relevant to inquiry and explain how the data could have come about 
as realization of a random experiment. These relevant aspects might 
include the genesis of randomness and the stochastic effects in the 
phenomenon under study. The defining characteristic of statistical 
models is their dependence on parameters and the incorporation 
of stochastic terms. The properties of the model and the properties 
of quantities derived from it must be studied in a long-run, 
average sense through expectations, variances and covariances. 
The parameters of the model that must be estimated from the data 
introduces the stochastic element in applying a statistical model. 
The model is thus not deterministic, it includes randomness whereby 
the parameters and related quantities derived from the model are 
likewise random. The properties of parameter estimators can 
often be described only in an asymptotic manner (the number of 
observations increases without bound). The process of estimating 
the parameters in a statistical model based on the data is known 
as fitting the model. The same model parameters can be estimated 
by different statistical principles, such as least squares method, 
maximum likelihood estimation, Bayes method and others. The 
parameter estimates obtained by different methods typically have 
different statistical properties (distribution, variance, bias and so 
on). The choice between these methods can be made based on the 
properties of the estimators. The distinguishing properties include 
computational ease, interpretive ease, bias, variance, mean squared 
error and consistency. 
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	 With the revolutionary advances in computer hardware and 
numerical algorithms over the last fifty years, complex statistical 
calculations can be performed. With appropriate software, any 
method is accessible in the sense of being able to produce a 
summary report on the computer. Nonetheless, the method is useful 
only when the user has a way to understand whether the method 
is appropriate for the situation, that is what the method is telling 
about the data and what the method is not capable of revealing. 
According to Richard Hamming (1915-1998) a computer scientist, 
the purpose of computing is insight, not numbers. Thus, to enrich 
data insight a solid understanding of the theory underlying a method 
is warranted.
	 This lecture showcases our contributions to the development 
of statistical models in tackling and capturing the multifaceted 
aspects of data in various situations. It will feature part of the vibrant 
research works being carried out over a decade while supervising 
several post-graduate students at UPM. In survival analysis, models 
have been developed particularly for partly interval-censored data 
parametrically and non- parametrically. The cure fraction models for 
both mixture cure model (MCM) and bounded cumulative hazard 
(BCH) were investigated and modified to accommodate interval-
censored data with change point. To get a better insight of a breast 
cancer data, competing risks decision tree model based on the 
subdistribution function has been developed. Vigorous researches 
were conducted in the analyses of longitudinal data where the 
assumption of independence was not taken into consideration. 
The generalized estimating equation (GEE) was adopted in the 
modeling. Bayesian approach of implementing survival models 
was also considered. Non-informative prior in particular Jeffreys 
prior was considered in the formulation of survival regression 
model. Other works that will be discussed include the three-level 
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claim model and a water quality index for Langat river by using the 
established subindices which will execute a statistical perspective 
approach. 

SURVIVAL ANALYSIS
Survival analysis is one of the statistical methods which is important 
in the analysis of lifetime, particularly in medical and biological 
sciences. The outcome variable of interest is time recorded until 
an event occurs. In the context of medical and biological studies, 
the event of interest is often death, the onset of a disease or the 
disappearance of a disease’s symptoms. The time to event of interest 
is called either survival time or failure time and the probability that 
a subject survives beyond a specified time is calculated by a basic 
quantity known as survival function. 
	 The observation of survival time has two components that must 
be unambiguously defined: a beginning point and an endpoint that is 
reached when the event of interest occurs. One of the complications 
arises in survival analysis is when the observation is incomplete. 
Two mechanisms can lead to incomplete observation of time, and 
they are censoring and truncation. A truncated observation is due 
to the selection process. Different circumstances can produce 
many types of censoring. The most commonly encountered form 
of a censored observation is one where observation begins at 
the defined time and terminates before the outcome of interest is 
observed. Such observations are said to be right censored. Left 
censoring is encountered when the actual survival time is less than 
that observed. Interval censoring arises when the event of interest 
cannot be directly observed and it is only known to have occurred 
during a random interval of time.
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	 The basic quantity employed to describe failure time phenomena 
is the survival function, the probability of an individual surviving 
beyond time t.  It is defined as

S (t) = P (T > t)

where T is a non-negative random variable denoting failure time. 
If T is a continuous random variable, the survival function is the 
complement of a cumulative distribution function,

S (t) = 1 – F (T )

where F(t) =  P (T # t). The survival function is integral of the 
probability density function, that is

S (t) = P (T > t) = ( )f u du
t

3

#

thus

f(t) = – ( )
dt

dS t

When T is a discrete random variable, a different technique is 
required. In addition to the survival function, the hazard function 
and the cumulative hazard function of T are also fundamental in 
survival analysis. Hazard function is also known as the conditional 
failure rate in reliability and can be defined as

( )( )
t
P t T t t T th t 1

t 0
lim 3

31# $= +
"O
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If  T is a continuous random variable, then

( )
( ) [ ( )]

( )
ln

S t
f t

dt
d S t

h t = =

A related quantity is the cumulative hazard function H(t), defined by

( ) ( ) - [ ( )]lnH t h u du S t
t

0

= =#

It is easy to see that 

( ) [- ( )] - ( )exp expS t H t h u du
t

0

= = = G#

S(t), h(t) or H(t)  uniquely determines the distribution of T.

	 In an applied setting, the task of model selection is, to a large 
extent, based on the goals of the analysis and on the measurement 
scale of the outcome variable. There are many issues involved in 
the fitting, refining, evaluating and interpreting each of the models 
but the same basic modeling paradigm would be followed in each 
scenario. 
	 A common feature for univariate survival data is right 
censoring. It occurs when the lifetime of an observation is only 
known to be greater than a known time. Censoring is assumed to 
be non-informative, that is, the censoring time Ci  for individual 
i is statistically independent of the failure time Ti . For each 
observation, a bivariate random variable is observed ( , ),T*

i id  where 
( , )minT T*

i i id=  and ( )I T Ci i i1d =   is a censoring indicator taking 
the value of 1 if  T Ci i#  and 0 if C Ti i1 , right-censored. Given a 
simple random sample ( , ), , ..., ,t i n1i id =  the likelihood function 
is given by
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( ) ( )L f t S ti

i
i
1 i= d d-% ,

where S(t) is the survival function and  f(t) is the corresponding 
probability density function.

Inference For Partly Interval-Censored Data 
Large body of the literature pertaining to censoring considers exact 
failure to be a special case of  interval-censored. This gives us the 
notion to investigate more on the situation where they are seen as 
separate items better known as Partly interval-censored (PIC) data. 
The Partly interval-censored (PIC) data can occur in medical and 
health studies that are followed by periodic follow-ups. With PIC 
data, the failure times are exactly observed for some subjects but 
for the remaining subjects, the failure times are observed only to 
lie in an interval. An example of this kind of data is provided by 
the Framingham Heart Disease study whereby the time of the first 
emergence of angina pectoris in coronary heart disease patients was 
the event of interest. For some patients, the event time is recorded 
exactly, but for the remaining patients, time is recorded only to 
fall within the interval between two clinical examinations. There 
exist few researches that address the PIC such as Huang (1999), 
deriving the asymptotic properties of the nonparametric estimation 
for the distribution function with PIC data. Kim (2003) studied the 
maximum likelihood estimation in the presence of PIC data under 
the proportional hazards model. Zhao et al. (2008) developed 
a nonparametric test approach in the existence of the PIC data, 
which is based on the same idea of the generalized log-rank test for 
interval-censored data that was given in Sun et al. (2005). 
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	 Comparison of survival functions is one of the main objectives 
in survival studies. In most previously published research this 
comparison of survival distribution for two samples or more has 
been solved for cases with right-censored and interval-censored. 
We focused on the aspect of inferential comparison problem for 
survival functions in the presence of PIC, both parametrically and 
nonparametrically. We employed the multiple imputation method 
to reduce the interval censored data to exact data, which can be 
handled by using specified methods for exact data
	 Consider a schematic follow-ups for medical studies in which x1 
, x2 , …, xm  are inspection times and the patient may be absent from 
the follow-ups with probability q' except at the first follow-up. Let 
Ti >0 be a random variable to denote the failure time of interest for 
ith subject and n the number of subjects with failure times following 
a continuous distribution with density function f(t, i), where i  is 
a parameter vector. Assume that we observe the exact failure time 
for n1 subjects and interval-censored failure time for the remaining 
n2  subjects ; (n2 = n-n1). By exact failure times we mean that any 
patient has the event of interest during the inspection times or that 
the patient’s condition necessitates entering the hospital to be under 
examination, where the event of interest is recorded exactly. Also, 
by interval-censored failure times we mean that the event of interest 
occurs between two inspection time,  (Li , Ri)  where Li , Ri  ! ( x1, 
x2 , …, xm )  and Li < Ri with probability one. In addition if the event 
of interest happens for the patient before the first examination, then 
we have left-censored, i.e.  ti  ! (0, Li] and if the patient did not 
experience the event of interest at the last examination, we will 
have right-interval censored, i.e.  ( , )t Ri i 3! .  Also, we assume 
that censoring is independent of the examination time. For the 
ith patient with interval-censoring define  ( ( , )I t L0i i i!d =  and  

( ( , ])I t L Ri i i i!c = . Then the log likelihood function for  i  is
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	 For the parametric case with  Ti following the Weibull 
distribution, the hazard function has the form                       

( ) ( ) ( )h t b
a

b
ti a 1= -

                   
where a and  b are the shape and scale parameters respectively. Also 
assume that the PIC data are available. Under this assumption the 
log likelihood function is

      ( , ) log log ( )(log log ) ( )

log[ exp[ ( ) ]] ( )( )

log[exp[( ) ( ) ] ]

L a b a b a t b
b
t

b
L

b
R
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	 Under Weibull model the maximum likelihood estimates of a 
and b are the solutions of partial derivatives of the log likelihood 
with respect to a and b and setting both to zeroes. To solve these 
simultaneous equations, we used Newton-Raphson method to obtain 
a and b.
	 The parametric tests considered were the score test and 
likelihood ratio test and these tests were extended to accommodate 
PIC data by using two methods. The first method was the generalized 
parametric test without multiple imputation technique (Direct 
Approach) and the second method was generalized parametric 
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test via multiple imputation technique (Indirect Approach) ( Azzah 
et.al., 2012).
	 The aim is to test the hypothesis  Ho : S1(t) = g = Sp(t) , which 
is to determine whether the p treatments could have resulted from 
an identical failure time distribution. Let So(t) denotes the common 
survival function under Ho and  ( )S tn

t  its parametric maximum 
likelihood estimate (PMLE) which is determined by estimating the 
parameter by using Newton-Raphson method.
	 Simulation studies were carried out to investigate and assess 
the performance of the estimators. The indirect approach is more 
efficient than the direct approach in most situation considered. For 
evaluating the performance of these two tests, with respect to the 
power, likelihood ratio test with indirect approach is better than the 
score test when the sample size is less than 50. 
	 For real data application, we carried out some modification 
on the breast cancer study that was presented by Klein and 
Moeschberger (1997) so that it is applicable to apply the parametric 
test for PIC data. The target of this study is to compare two 
treatments with respect to their cosmetic effects. The data set 
are shown in Table 1.  To test the cosmetic effect between two 
treatments, we used four tests: the score test with direct (STD) and 
indirect (STI) approaches and likelihood ratio test with direct (RTD) 
and indirect (RTI) approaches and the obtained values of the tests 
statistic equals to 23.775, 7.655, 15.085 and 7.262 respectively 
with p-values equals to 0.000, 0.022, 0.000 and 0.026 respectively. 
These results indicate that there is a significant difference between 
the treatments in terms of cosmetic effect. Figure 1 indicates that 
the patients in the (R+C) group develop breast retraction earlier 
than those in the R group.
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	 In the nonparametric setting, the Turnbull self-consistency 
algorithm was modified in terms of PIC. The log-rank test was 
adopted with multiple imputations and evaluated. The proposed 
test behaves accordingly, in fact more accurate than Huang’s test 
(2008).

Table1 Time to cosmetic deterioration (in months) in breast cancer 
patients with two treatments

Figure 1 PMLE of survival function of time to cosmetic deterioration
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Cure Fraction Models for Interval Censoring With a 
Change-Point 
The widely used model in survival analysis is the Cox (1972) 
proportional hazards model. This model is based on the assumption 
that every element in the population under study is susceptible to 
the adverse event of interest. But with the advances of medical 
treatment and health care, there are patients who are not susceptible 
to the occurrence of the event of interest. The proportion of such 
patients is considered as the cured fraction. The assumption of Cox 
is then violated and a more appropriate model is called for. Apart 
from that, in clinical trials or follow-up study, changes might occur 
at some unknown point that might need to be identified. Megan et 
al. (2012), developed a cure survival model that allows for change-
point effects in covariates to investigate a potential change-point 
in the age of diagnosis of prostate cancer. However their work 
was limited to right-censored and confined to mixture cure model. 
Motivated by Megan’s work, in the setting of interval-censored data 
we extended both the mixture cure model and the non-mixture cure 
model considering a change-point. 
	 A change point problem is a problem in which changes at 
unknown points need to be identified and the locations of these 
changes need to be estimated. With this information, we could 
elucidate further information about the relationship between the 
covariate and the probability of survival. Change point problems 
occur frequently in survival studies. For example, data obtained 
from a group of preschool boys indicates that their weight/height 
ratio and their age have one functional relation before a certain age 
but that functional relation changes after this age (Gallant, 1977).  
As another example, cancer incidence rates remain relatively 
stable in younger people, but change drastically after a certain age 
(MacNeill and Mao, 1995). 
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Mixture Model with Change-point
Consider a group of patients entering a clinical trial. Let  p be the 
proportion of patients cured on treatment and 1- p be the proportion 
uncured. The survival function for the entire population of patients 
entering the clinical trial is given by 

S(t) = p + (1 –p)Su(t),

where Su(t) is the survival function for the uncured group. Suppose 
there are n patients entering a study. Let ti, i = 1, 2, ..., n be the 
observed survival time for the  patient. Let id  be a censoring 
indicator defined such that id  = 1 if  ti  is a failure and 0 if it is 
right-censored. Then the likelihood function is given by

{( - ) ( )} { ( - ) ( )}L p f t p p S t1 1 -
u i

i
u i

i

n
1

1

i= +d d

=

%

where fu(ti)  is the density function of uncured patients. 
	 Consider a setting in which the event time T is known to 
have occurred within two time points (tLi, tRi). Here,  tL is the latest 
examination time before the event, and  tR is the earliest examination 
time after the event, where tRi  = 3 if subject  i has not met the event 
before the last follow-up. Then, the observed data denoted by (tLi, 
tRi, Xi), can be written as

( ) ( ) ( )P L T R P T L P T Ri i i i i i i# # $ $= -                          
	 ( - )[ ( )- ( )]p S t X S t X1 u L u R=                                                     

We can reformat the censoring indicator id  as follows:  
( )I ti R 31d =  for t t tLi i Ri# #  . Then, the likelihood function 

for the n observed interval-censored data is the following:
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( [ ( )- ( )]

( ) ( )

L p S t X S t X

p p S t X
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	 Now, assume that the change point of the model depends on 
the covariate X, and that at this point or threshold the probability 
of cure or hazard function takes a sudden jump or fall. Suppose 
that the change point is x .  Both  n  and  p  are thus dependent 
on the X, and if X # x , let ( )p X p1=  and  ( )X 1n n= , while, if 
X 2 x ,   ( )p X p2=  and ( )Xu u2= . Thus, by incorporating the 
unknown change point x , we can write
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and the value zero otherwise. Considering lognormal distribution, 
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above likelihood then becomes:
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Estimation Procedures
Using the traditional likelihood approach, we will encounter two 
difficulties during the estimation process. Firstly, x  is unknown 
and the likelihood function is not differentiable with respect to the 
change point parameter x , and consequently, standard Taylor series 
methods cannot be used. The second, is that the computation of the 
maximum likelihoods is complicated. 

Smoothed Likelihood Approach
To circumvent the critical problem of non-smoothing, a smoothed 
likelihood approach is proposed. The idea of this approach is to use a 
continuous and differentiable function to approximate the indicator 
functions ( ) )I X # x  and  ( ) )I X 2 x . Let  K(u) be a continuous 
function such that  K(u) is differentiable and non-decreasing 
over the real line, with  ( )lim K u 0u =" 3-  and ( )lim K u 1u ="3

. Define K(u) = K(u/hn), and hn is a small positive constant that 
depends on the sample size.  A useful special case of this class 
of function is the logistic function, where K(u) = 

[ / ]

[ / ]

exp

exp

u h

u h

1 n

n
+

 
Based on this function, the smoothed likelihood for the observed 
data  ( , , )T Xi i idu  is
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The second difficulty with the likelihood function is that the 
hazard function of  T is no longer proportional if the cure fraction 
p is not equal to zero; thus, the simple form of the likelihood 
function cannot be obtained here (Kuk and Chen,1992). To solve 
this difficulty, we rewrite the likelihood using partially complete 
censored observations. Thus, the complete likelihood function can 
be changed to the modified likelihood function
       
    

 
 

where,  ih  is not fully observed, i.e. , if  1id =  then  1ih = but if  
,0i id h= is not observed and it can be one or zero. Therefore, to 

perform maximum likelihood estimation for the parameters i , we 
need to implement EM algorithm. 
	 As usual simulation studies were conducted to investigate 
the performance of the proposed model. The simulation study 
conducted showed that based on the bias and mean square error 
values, the proposed estimation method performs well in the 
situations considered.
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Bounded Cumulative Hazard Model with Change-Point
Chen et al. (1999) defined the bounded cumulative hazard (BCH) 
model as follows. Let  N denote the number of carcinogenic cells 
that remain active to develop a cancer for ith  subject. Assume that  N  
has a Poisson distribution with mean i . Let Zj, j = 1, 2, ... N denote 
the random time for the jth cancer cell to produce a detectable cancer 
mass, where,  Zj  are assumed to be independently and identically 
distributed with   F(t) = 1–S(t).  Then the time to relapse of cancer 
can be defined by the random variable T = min {Zj, j = 1, 2, ... N}. 
The survival function for the population is given by
                
      Sp (t) =  P [No cancer by time t]    

		  =   P [N = 0] + P [Z1 > t, Z2 > t, ..., ZN > t, N $ 1]   

		  =  (- ) ( ( ))
!

(- )
exp

exp
S t

N

N
N

N

1i i
+ 3

=
: D/      

		  =   exp (– ( ))F t ( )F ti r=    
                         
where r  is the probability of cure which can be defined as r                                   
= ( ) ( 0) (- ) .lim expS t P Nt p / i= ="3                                     
	 Let  yi  denote the survival time for individual i, which might 
be right censored; yi = min (Ti  Ci) in which  Ti = min {Zi1, Zi2 , ..., 
ZiNi}, and  Ci is right censored variable. Let id  denote the censoring 
indicator, which equals 1 if yi is failure time and 0 if it is right 
censored. Considering that censoring times are independent and 
non-informative, Chen et al. (1999), Mizoi (2004) and Weston 
and Thompson (2010) showed that the likelihood function for the 
model takes the form

log( ) ( ) ( )L f y S yi i

n

i
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ir= - d

=
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We can further incorporate covariates X into both the cured 
probability and distribution function of uncured. Moreover, a 
parametric model can be specified for the survival time. 
	 Suppose that the change-point model depends on X, and that 
at the change-point x  the survival rate or cure probability takes a 
sudden jump or fall.  Both n  and  r  are depended on the X, then
if  X ≤ x , write  ( )X p1r =  and n(X)= 1n  while,  if  X 2 x  ,   
( )X p2r =  and  n  (X) = 2n . In other words, we can write

( ) ( ) ( ) ( ) ( )( )X I X I X X I X I Xp p 2and1 2 12 2# #x x n n x n xr + = +=

        
	 The complete data are  (yi  d i , Xi ) and the unknown parameters 
are defined by ( , , , , ),p p 21 2 1 1 2i n n xv v= . Hence, the likelihood 
function under change-point x  is defined as:
  
	 -[ ( ) ( , )]logL pp f y
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i
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11
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i
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1 i=

#d x
= " ,%       
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( )i I X
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i
2

( )F y
2
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2d x" ,

With the classical likelihood approach, this likelihood function is 
not differentiable with respect to the change point x . Consequently, 
standard Taylor series methods cannot be used. A smoothed 
likelihood function is proposed.

Simulation Study
The simulation study carried out 500 replications of sample sizes 
250, 500, 1000, and 3000 for both models. Large sample sizes 
were needed to observe the asymptotic properties of smoothed 
parameters. Two simulation scenarios were considered. The first 
scenario used a Uniform (0, 1) random variable with a change-
point at 0.5, while the second used a truncated Normal (1, 1, 0, 
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2) random variable with a change-point at 1.  The event time was 
generated from the change point model with lognormal distribution, 
and the cure indicator was generated using uniform distribution to 
determine whether someone is cured.
	 The bias in the estimates for all the parameters reduced 
with increasing sample size for both normally and uniformly 
distributed covariate. Increasing sample size ensures that the 
sample characteristics get closer to the properties defined by 
the data generating model/process hence reducing bias. This 
observation demonstrates that the estimator of the parameters 
is statistically consistent. The Monte Carlo standard errors also 
reduced with increasing sample sizes across all parameters. 
Given the consistency of the estimator and the increased 
precision with increasing samples size, the root mean squares 
errors (MSE) also reduced with increasing sample size.  
In particular in the mixture model, the distribution of the covariate 
is relatively more accurate and precise to estimate the change point 
when the covariate is normally distributed than when it has a flat 
distribution.

Competing Risk
Often in life-testing situation, failure of an individual can be 
identified as one or more of J (J ≥ 2) mutually exclusive, but possibly 
dependent cause of failure. In other words, each individual is subject 
to  J  distinct risks referred to as competing risks threatening his/
her life. Occurrence of one event precludes observation of the other 
events on the same individual (it is assumed that patient can fail 
only from one cause). Associated with cause j, there is nonnegative 
absolutely continuous random variable Xj representing the lifetime 
of individual when no other potential risks are present. Suppose 
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the termination time of an individual is defined as the time to first 
failure. Thus, lifetime of an individual is given by T = min {X1, ..., 
XJ}.  The  available  information is usually given by the pair  (T, 
d), where d  indicates the cause of failure, i.e. d  = j if T = Xj. The 
competing risks concept can appropriately be applied to many areas 
of study such as industrial reliability analysis, market transaction 
analysis and clinical trial on paired organs.

Decision Tree for Competing Risks 
A huge amount of data has been rapidly accumulated, due to the fast 
development of computer technology.  A new data analysis problem 
has arisen in such situation.  Data mining is used to find important 
“knowledge” from large databases.  Decision tree as one of many 
data mining techniques is a popular approach for segmentation, 
classification and prediction by applying a series of simple rules.  
It has the advantage that researchers can easily understand and 
explain the results, since it is expressed by a tree structured diagram 
as a final output.  Decision trees automatically constructed from 
data have been used successfully in many real-world situations.  
Their effectiveness has been compared widely to other automated 
data exploration methods and to human experts.  Decision tree 
can provide an important methodology in every data mining tools.  
	 The landmark work of a decision tree is the Classification and 
Regression Trees (CART) methodology of Breiman et al. (1984), 
who introduced a tree methodology for univariate discrete or 
continuous response.  A different approach is C4.5 proposed by 
Quinlan (1992).  
	 There is now quite a lot of work dealing with decision tree 
especially in survival analysis (Gordon and Olshen 1985, Segal 
1988, Davis and Andersen 1989, LeBlanc and Crowley 1992 and 
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1993, Segal 1995, Huang et al. 1998, Segal 1992, Zhang 1998, 
Su and Fan 2004, Gao et al. 2004), but there are no decision tree 
methods for competing risks survival data.  Since analysis of 
competing risks survival data is complex due to the presence of 
more than one cause of failure, then it should be useful to develop 
such method.
	 In Ibrahim et al. (2008), we extended the decision tree for 
competing risks survival time data analysis by utilizing the 
advantage of proportional hazards model of subdistribution.  Other 
related articles are in Noor Akma et al. (2009), Abdul Kudus et al. 
(2009), Ibrahim and Kudus (2008), Abdul Kudus et al. (2008) and 
Noor Akma and Abdul Kudus (2009).
	 In the application of competing risks tree, we used breast cancer 
data from Fyles et al. (2004).  Between December 1992 and June 
2000, 639 women 50 years of age or older who had undergone 
breast-conserving surgery for an invasive adenocarcinoma 5 cm 
or less in diameter (pathological stage T1 or T2) were randomly 
assigned to receive breast irradiation plus tamoxifen, RT+Tam, 
(319 women) or tamoxifen alone, Tam, (320 women).  Participating 
centers included the Princess Margaret Hospital, the Women’s 
College Campus of the Sunnybrook and Women’s College Health 
Science Centre in Toronto, and the British Columbia Cancer Agency 
centers in Vancouver and Victoria.  Table 2 contains the list of 
variables and their description.
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Table 2  Description of variable in the breast cancer study

Variable name Description

tx Randomized treatment: 0=tamoxifen, 
1=radiation+tamoxifen

Variable assessed at the time of randomization
pathsize Size of the tumour (cm)

hist Histology: 1 = ductal, 2 = lobular,                     
3 = medullary, 4 = mixed, 5 = other

hrlevel Hormone receptor level: 0 = negative, 
1=positive

hgb Haemoglobin (g/l)

nodedis Whether axillary node dissection was done, 
0=Yes, 1=No

age Age (years)
Outcome variables

time
Time from randomization to event (relapse, 
second malignancy or death) or last follow up 
(years)

d Status at last follow-up: 0=censored, 1=relapse, 
2=malignancy, 3=death

	 The events that might occur in breast cancer study were relapse, 
second malignancy and death.  The patient’s survival time was the 
time length between the date of randomization and the occurrence 
of one event or last follow-up date.  
	 Since the goal of regression tree is to partition patients into 
groups on the basis of similarity of their responses to treatment, we 
constructed a separate regression tree for each treatments (tamoxifen 
alone and tamoxifen plus radiation).  The partitioning is based on 
baseline characteristics such as patient demographics and clinical 
measurements.  The final tree structure provides treatment effect 
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within each group of patients.  The question to be answered by this 
type of analysis is – for whom does the treatment work best?
	 The cumulative probability for relapse by time t is shown 
in Figure 2.  Here we compare the probability for two types of 
treatment.  The patients with tamoxifen plus radiation have less 
probability to relapse compared to those with tamoxifen alone as 
expected.  It showed the advantage of radiation in reducing the 
occurrence of relapse.      

Figure 2  Cumulative Probability for relapse for two types of treatment

	 The exploration was further employed to find group of 
patients for each treatment by using decision tree.  With respect to 
probability for relapse, we obtained four groups of patients which 
were treated by tamoxifen alone, and three groups of patients which 
were treated by tamoxifen plus radiation (Figure 3).
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Figure 3  Decision tree for probability for relapse

The description of four groups of patient which was treated by 
tamoxifen alone is:
1.	 Node 2: tumour size < 1.3 cm
2. 	 Node 4: tumour size $ 1.3 cm and age < 59.5 years
3. 	 Node 6: tumour size $ 1.3 cm and age $ 59.5 years and 

haemoglobin < 139 g/l
4. 	 Node 7: tumour size $ 1.3 cm and age $ 59.5 years and 

haemoglobin $ 139 g/l

	 This group formation reveals that node 2 has the lowest 
probability to relapse up to about 8 years follow-up, whereas node 
4 has the highest probability (Figure 4).
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Figure 4  Cumulative Probability for relapse for groups resulted by 
decision tree for patient with tamoxifen alone 

	 For patients with tamoxifen plus radiation, there are three 
groups resulted by decision tree, namely:
1.  Node 2: tumour size < 2 cm
2.  Node 4: tumour size $ 2 cm and hormone receptor level negative
3.  Node 5: tumour size $ 2 cm and hormone receptor level positive

	 Women with tamoxifen plus radiation whose tumour size less 
than 2 cm have the lowest probability to relapse, whereas the highest 
probability is for those whose tumour size $ 2cm and negative 
hormone receptor level (Figure 5).
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Figure 5  Cumulative Probability for relapse for groups resulted by 
decision tree for patient with tamoxifen plus radiation

	 Overall comparison for both treatments reveals that the poorest 
and best prognosis are from tamoxifen plus radiation treatment 
group.  We found that tamoxifen plus radiation is not effective for 
those women whose tumour size greater than 2 cm and negative 
hormone receptor level.  This group is more likely to relapse 
compared to the others.  On the other hand, patients with tamoxifen 
plus radiation and tumor size less than 2 cm have the best prognosis, 
because they are less likely to relapse (Figure 6).
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Figure 6  Cumulative Probability for relapse for all 
groups resulted by decision tree

	 The analysis for two other events (second malignancy and 
death) showed different results.  This showed that patients give 
different responses to the treatment. 
	 This competing risks tree method based on proportional hazards 
of subdistribution model intends to provide an exploratory data 
analysis for competing risks survival data, and it is complimentary 
rather than competitive to those parametric or semi-parametric 
methods.  The application on breast cancer data showed that the 
method could find groups of data which had similar response to 
treatment.  Simulation results showed that the proposed method 
performs well for prognostic classification. In all the simulations, 
high portion of the data structures can be correctly identified. 

BAYESIAN INFERENCE
Bayesian estimation approach has recently become a generally 
acceptable method in estimating parameters. Previously, the 
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Bayesian approach was discouraging due to the necessity of 
numerical integration. As a result of the radical change in 
the computer intensive sampling methods of estimation, the 
Bayesian method is now vigorously pursued by researchers for 
its comprehensive approach to the estimation of complex models. 
Bayesian inference is an approach that employs the Bayes’ rule in 
order to update the probability estimate of a hypothesis taking into 
consideration new evidences as they become available. Bayesian 
updating is one of the essential techniques used in modern statistics, 
more importantly in mathematical statistics. The Bayes approach 
makes used of our prior beliefs of the parameters which is referred 
to as Prior distribution. The inference is based on the posterior 
estimate which is simply the combination of ones prior knowledge 
and the availability of data (the likelihood).
	 Non-informative prior is one of the categories of the prior 
distribution. It refers to a situation where there is very limited 
knowledge or information prior to the researcher. With non-
informative prior there is little or no influential information that is 
added to the actual data available. What this means is that we have 
an occurrence of a set of parameter values in which the stastitician 
believes that the choice of a parameter is equally likely. Jeffreys 
prior and extension of Jeffreys prior are used to avoid any hyper 
parameter specification. Both are invariant under reparametrization, 
because of the relation to Fisher information, when we have large 
information, we minimize the influence of the prior such that it is 
non-informative as possible. Jeffreys prior and extension of Jeffreys 
are very useful for data that do not have any prior information 
available and give better result in many cases than classical 
estimation.
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Bayesian Estimation Under Non-Informative Prior
There is a huge body of literature on Bayesian survival models. 
Bayesian with non-informative priors and right censoring (without 
consideration of covariates) can be seen in Al Omari et al. (2010), 
(2012) and Al Omari et al. (2011). We developed Bayesian models 
to incorporate covariates by employing Jeffreys and extension of 
Jeffreys as priors. Under the regression framework the extension 
of Jeffreys was modified to incorporate the covariates. The Weibull 
distribution was considered as the distribution of the time to event 
due to its appealing features that includes its ability to provide 
reasonably accurate analysis with extremely small samples. With 
the failure time (t1, ... tn) following Weibull distribution the proposed 
extension Jeffreys prior is

( ', ) ( [ ( ', )])detg k I log
0

j
j

n

b i b i= b
=

b l/ ,

where k is a constant and  ( ', )I b i is the Fisher information 
matrix with covariates and an unknown shape parameter. The joint 
probability density function with right censoring is
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where  f(.) and  S(.)  are the probability function and survival 
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The posterior probability density function is
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	 The Gauss quadrature rule can be used to estimate each 
parameter with a chosen loss function.
	 The performance of Bayesian estimators was assessed and 
compared with its maximum likelihood counterpart via simulation 
study under several conditions. The results indicated that under 
certain situations modified Jeffreys emerges as a better method 
compared to the others. All methods produced estimators that 
behaved in the appropriate manner in terms of consistency. Models 
encompassing interval-censored data have also been developed 
based on Bayesian approach, see Chris et al. (2013). Other related 
works with Bayesian can be seen in Guure and Ibrahim (2013), 
Chris and Noor Akma (2012,2013), Chris et al. (2012a), (2012b).

GENERALIZED LINEAR MODEL
Generalized linear model (GLM) is essentially a unified method 
of analyzing certain types of data situations. It is based on the 
exponential family of probability distributions which includes 
normal, binomial, Poisson, gamma, inverse Gaussian, geometric, 
and for a given auxiliary  parameter, the negative binomial. The 
binomial models themselves include logit, probit, and log-log, to 
name a few. One may use GLM to model ordinary least squares 
(OLS) regression as well as logistic, probit and Poisson regression 
models. The ability to compare parameter estimates, standard 
errors and summary statistics between models gives the researcher 
a powerful means to obtain an optimal model for a given dataset. 
However, being likelihood based, GLMs assume that individual 
rows in the data are independent from one another. In the case 
of longitudinal data, this assumption may fail where the data 
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are correlated (Hardin and Hilbe, 2002). Hence, we proposed 
generalized estimating equation (GEE) with smoothing spline to 
capture the aspect of correlation in the data.

GEE-Smoothing Spline Model
It is very common in economics, epidemiology or clinical trials to 
make a study in which subjects are followed over time or measured 
on several occasions to collect response variables. This type of 
study is commonly known as longitudinal study.  The characteristic 
of these data is that they are no longer independent, in which 
there is correlation among within subject measurements.  Another 
characteristic is that the variances usually are not homogeneous.  
Thus methods in the class of generalized linear model (GLM) are 
no longer valid for these data, since GLM assumes that observations 
are independent. Some developments have been proposed to 
analyze such data, that can be classified into three types of model, 
marginal model, subject specific effect, and transition model (Davis, 
2002).   In the class of marginal model, Liang and Zeger (1986) 
and Zeger and Liang (1986) extended quasi-likelihood estimation 
of Wedderburn (1974) by introducing “working correlation” to 
accommodate within subject correlation, which is called generalized 
estimating equation (GEE).  GEE yields consistent estimates of 
the regression coefficients and their variances even though there 
is misspecification of the working correlation structure, provided 
the mean function is correctly specified.  
	 GEE is part of the class of parametric estimation, in which the 
model can be stated in a linear function and the function is known.  
Very often the effect of the covariate cannot be specified in the 
specific function. Nonparametric regression can accommodate 
this problem by relaxing relationship between covariate and 
response.  In nonparametric regression, we assume that the 
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effect of the covariate follows an unknown function without 
specific term, that is it is just a smooth function.  To date there are 
several methods in nonparametric regression, for example: local 
polynomial kernel regression, penalized splines regression, and 
smoothing splines. Green and Silverman (1994) gave a simple 
algorithm for nonparametric regression using cubic spline by 
penalized least square estimation.  They also gave nonparametric 
and semiparametric methods for independent observations for 
class of generalized linear models.  We proposed GEE-smoothing 
spline to analyze longitudinal data and study the properties of the 
estimator such as the bias, consistency and efficiency.  We used 
natural cubic spline and combine  this with GEE of Liang & Zeger’s 
in the estimation.
	 From the simulation, we can conclude that GEE-smooting 
spline has better properties than GEE-local polynomial kernel 
proposed by Lin & Carroll (2000).  The pointwise estimates of 
GEE-smoothing are consistent, even if we use incorrect correlation 
structure.  The convergency rates of consistency for independent 
data (no correlation), moderate correlation, and high correlation 
are the same.  If data are correlated, ignoring this correlation in 
the model, will give the most inefficient estimate.  Taking into 
account the dependency into the model is better than ignoring it, 
even with incorrect correlation structure.  If data are independent, 
the efficiency of using correct or incorrect correlation structures 
is almost similar.  Hence, since in true situation the correlation is 
unknown, then it is better to assume the data are correlated rather 
than to assume data are independent (Suliadi et al., 2010a). We 
extended this with semiparametric estimation (Suliadi et al., 2010b). 
Comparison of some smoothing parameter selection methods can be 
seen in Suliadi et al. (2009). We also have developed an algorithm 
on how to generate correlated discrete ordinal data using R and 
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SAS IML (see Noor Akma and Suliadi, 2011). Another extension 
of semiparametric estimation with profile algorithm for longitudinal 
binary data is in Suliadi et al., (2013).
	
CREDIBILITY MODEL
One of the basic problems in presenting various insurance policy 
is to determine their premiums. If we have observations of past 
claims for a group of contracts then we might be able to predict the 
next period premium. Thus, for insurance risks, the determination 
of their premiums must strongly reflect the features of those risks. 
In insurance premium determination, it is a familiar practice to 
group individual risks to ensure homogeneity in reaching a fair and 
equitable premium across the individuals so that the risks within 
each group are as homogeneous as possible in terms of certain 
observable risk characteristics. That is a rating group is viewed 
as homogeneous with respect to the underwriting characteristics. 
However, not all risks in the group are truly homogeneous. A 
collective premium also called the ‘manual premium’ is then 
calculated and charged for this group. The collective premium 
is designed to reflect the expected experience of the entire rating 
class and implicitly assumes that the risks are homogeneous. In 
general credibility theory is a set of quantitative tools which allows 
an insurer to perform prospective experience rating (adjust future 
premiums based on past experience) on a risk or group of risks 
(Klugman et al, 2004). Based on the experience and the collective 
premium, the credibility theory determines the credibility premium 
by the following credibility form:

Credibility premium = Z#(experience)+(1-Z)(collective premium),
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where Z a value between 0 and 1, is called the ‘credibility factor’ 
and needs to be chosen. 
	 There have been a variety of insurance pricing methodologies to 
serve this purpose, among which is the credibility ratemaking. This 
is one of the most important techniques used in general insurance 
pricing. Under credibility techniques, one separately and adaptively 
determines the premiums for each contract in a heterogeneous 
portfolio, by effectively combining the policyholder’s claim 
experience and the portfolio’s particular risk features.  In credibility 
models there are so called structure parameters that must be 
estimated before the calculation of the credibility estimators 
themselves. 
	 In the usual credibility model, observations are made of a risk 
or group of risks selected from a population and claims are assumed 
to be independent between different risks. However, there are some 
problems in practical applications and it may be violated in some 
situations. Some credibility models typically allow for one source of 
claim depemdence only, that is across time for an individual insured 
risk or group of homogeneous insured risks. There exist some other 
credibility models in the literature which have been developed 
on two-level common effects model that allows for two possible 
sources of dependence: across time for the same individual and that 
between individual risks. We established the notion of modeling 
claim dependence in credibility models with dependence induced 
by three-level common effects that allows for three possible sources 
of dependence: the dependence among portfolio risks, dependence 
of the individual risks and the dependence of experience for a 
particular individual risk over time. The properties of the model 
were investigated and the structural parameters estimated (Mahdi 
et al., 2013 and 2011). The unbiased estimation of the structural 
parameters were derived (Mahdi et al., 2012).
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THE LANGAT RIVER WATER QUALITY INDEX 
Water quality is generally described according to biological, 
chemical and physical properties (Bharti and Katyal, 2011). Based 
on these properties, the quality of water can be expressed via a 
numerical index that is Water Quality Index (WQI) by combining 
measurements of selected water quality variables. The selected 
water quality variables were identified with respective weights 
and the determining processes were based on personal evaluation, 
namely, opinion gathering techniques. The weights assigned to 
the selected variables were based on the relative importance given 
by the experts. This weights determination technique is used by 
other researchers including Malaysian Department of Environment 
(DOE). The selected variables, together with respective weights are 
applied to calculate water quality index in all rivers in Malaysia. 
Due to varying characteristics for each river, the weights for water 
quality variables may be different for separate rivers. Therefore it 
is clear that the existing weights of the selected variables, as per 
DOE are subjective in nature and no detailed studies have been 
done to determine the weights objectively. 
	 Langat River is one of the most important raw water resources 
for drinking water, recreation, industry, fishery and agriculture. The 
river which is situated in the state of Selangor, Peninsular Malaysia 
with a total catchment area of approximately 1,815km2 is chosen 
for the pollution prevention improvement programme, introduced 
by the Malaysian Department of Environment (DOE) from 2001 to 
improve the condition of polluted rivers in Malaysia. Langat River 
as a tropical catchment area is experiencing rapid urbanization 
(Amini et al. 2009) and the gain in size of urbanised area was also 
reported by Jaafar et al. (2009). The increasing of developing areas 
within the river basin increases pollution loading into the Langat 
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River. Thus, surface water pollution is identified as the major 
problem affecting the Langat River Basin in Malaysia and major 
sources of surface water quality variations in Langat River come 
from industrial effluents, wastewater treatment plants, domestic 
and commercial areas (Juahir et al. 2010). It is also obvious that 
the Langat River ecosystem is under stress from the discharge of 
effluents particularly domestic sewage (Lee et al. 2006). Due to 
rapid urbanization and changes from undeveloped to developed 
area, Langat River experienced changes of pollutants with respect 
to space and time and we are unable to capture these drastic changes 
if WQI is not revised. Therefore, the revision of the river Water 
Quality Index (WQI) is needed as recommended by Juahir et al. 
(2010). Thus we undertake the task of determining the weights 
and subsequently formulate a new WQI by using the approach of 
multivariate and Bayesian. In Mohd Ali et al. (2013 a, and c), the 
relative importance of six water quality variables (dissolved oxygen, 
(DO); biochemical oxygen demand, (BOD); chemical oxygen 
demand, (COD); suspended solid, (SS); potential of hydrogen, 
(pH); ammonia, (AN)) were investigated by using cluster analysis 
followed by discriminant analysis. These variables were considered 
in the WQI calculation by DOE and  were established in a formula 
based on expert opinions which is very subjective in nature that 
do not take into consideration the interrelationships between the 
variables. The results in the relative ranking were different and 
we belief the ranking from the statistical approach can be used as 
a guide to investigate other influential available variables in the 
water quality of Langat River. And in Mohd Ali et al. (2013 b), in 
the development of a new Bayesian S-W (Stock-Watson) index, 
the Bayesian model comparison criterion was used to choose the 
best coincident-index model.
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CONCLUSION
The role and the importance of statistical modeling are obvious as 
we need modeling for the purpose of statistical inference, describing 
phenomena, prediction and decision making. With the rapid 
progression of technology, challenges in statistical modeling are 
forever growing. Moreover, data are becoming more complicated 
and sophisticated and these entail a more creative and innovative 
statistical techniques for the statisticians to explore in order to 
capture the many facets of the data. To procure virtuous statistical 
models and enhance model performance the statisticians should 
strongly embrace three things (Abdul Aziz Jemain, 2011). First 
is to reinforce the mathematical statistics knowledge as this will 
help in the assimilation of the theory and application, enhance 
computational ability and strengthen problems formulation. Without 
doubt the second requirement is to have a profound computational 
skill. Third is the need to have the ability to comprehend strongly 
the fundamentals in order to translate and provide reasonable data 
interpretation and inference.
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