MOLECULAR CHARACTERIZATION AND ISOENZYME PROFILES OF GIARDIA DUODENALIS ISOLATES FROM IRANIAN PATIENTS IN FARS PROVINCE, IRAN

MOHAMMAD RAYANI

FPSK(p) 2014 2
MOLECULAR CHARACTERIZATION AND ISOENZYME PROFILES OF
GIARDIA DUODENALIS ISOLATES FROM IRANIAN PATIENTS
IN FARS PROVINCE, IRAN

By

MOHAMMAD RAYANI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia,
in Fulfilment of the Requirement for the Degree of Doctor of Philosophy

January 2014
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
Dedicated to:

The memory of my late Father, and Mother,

My loving Wife and children,

&

All my supportive family members
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirements for the degree of Doctor of Philosophy

MOLECULAR CHARACTERIZATION AND ISOENZYME PROFILES OF GIARDIA DUODENALIS ISOLATES FROM IRANIAN PATIENTS IN FARS PROVINCE, IRAN

By

MOHAMMAD RAYANI

January 2014

Chairman: Ngah Zasmy Unyah, Ph.D

Faculty: Medicine and Health Sciences

Giardia duodenalis is the most common intestinal parasite among humans and is endemic throughout the world. Diarrhea and malnutrition are the main clinical pathogenesis especially in children. Giardiasis is one of the common infections found occurring in Iran. Identifying the prevalence of the common genotype assemblages and zymodemes of G. duodenalis in this province will allow for a better understanding of the route and source of the transmission for G. duodenalis, especially related to the control and prevention strategies. The heterogeneity among G. duodenalis strains may explain the variable clinical manifestations, host response and treatment efficacy characteristic of human giardiasis. The first objective was to study the genetic characterization of G. duodenalis isolates at Fars Province, south of Iran by semi-nested PCR and isoenzyme analyses. The second objective was to identify the most common G. duodenalis assemblages or sub-assemblages involved in the transmission of giardiasis in this area. Human fecal samples (n=1000) were collected from health centers and hospitals in Fars province, south of Iran from September 2009 to August 2010. Standard fecal staining method and microscopic confirmation of both G. duodenalis cysts and trophozoites were performed before and after the fecal concentration method. Purification and isolation of G. duodenalis cysts and trophozoites were based on the modification of the standard sucrose gradient method. Consequently, DNA was extracted using the standard Phenol Chloroform Isoamyl Alcohol method. A fragment of the SSU-rDNA (292 bp) gene was amplified using the forward primer RH11 and reverse primer RH4. Semi-nested PCR and sequence analysis were then performed using primers GDHeF, GDHiF, and GDHiR that amplifies a 432 bp fragment of the glutamate dehydrogenase gene (gdh). Phylogenetic analysis was carried out using a neighbor-joining tree composed of the 40 nucleotide sequences of successfully isolated G. duodenalis and compared with the known sequences published in GenBank. Fifteen cultures of G. duodenalis isolates were analyzed using isoenzyme in a polyacrylamide gel electrophoresis (PAGE). Five different enzyme systems were
used to characterize each isolate: (i) Glucose-6-phosphate dehydrogenase (G6PD, E.C. 1.1.1.444), (ii) Glucose phosphate isomerase (GPI, E.C. 5.3.1.9), (iii) Malate dehydrogenase (MDH, E.C. 1.1.1.37), (iv) Malic enzyme (ME, E.C. 1.1.1.40) and (v) Phosphoglucomutase (PGM, E.C. 2.7.5.1). The results indicated that 107/1000 (10.7%) samples were found positive for *G. duodenalis* based on microscopy confirmation. Almost similar results were observed in molecular study and isoenzyme profile analysis. PCR analysis identified 80% (40/50) samples were positive for *G. duodenalis* based on SSU-rDNA amplification on sucrose gradient samples. Further genotyping has resulted in 80% (32/40 samples) isolates as sub-assemblage of AII and 20% (8/40 samples) isolates as assemblage B based on the DNA sequence of the *gdh*. Phylogenetic analysis had shown that *G. duodenalis* isolates at Fars province were widely distributed within assemblage A cluster (sub-assemblage AII) and the remaining isolates were dispersed throughout the assemblage B cluster (sub-assemblage BIII and BIV). Electrophoretic heterogeneity was found in *G. duodenalis* enzymes profile. One identical isozyme was detected for G6PD isoenzyme pattern. Two different isozymes were detected for GPI and MDH isoenzyme patterns. In addition, three different isozymes were detected for ME and PGM isoenzyme patterns. Further analysis has shown that four zymodemes were found among the fifteen isolates of *G. duodenalis*. The zymodemes 1, 2, 3 and 4 was observed to have similarity with 7, 2, 4 and 2 isolates, respectively. In conclusion, five isoenzyme systems were used in this study; these are G6PD, GPI, MDH, ME and PGM for the characterization of *G. duodenalis* isolates and distinguish zymodemes of the parasite in Iran. The isoenzyme electrophoretic profiles divided fifteen *G. duodenalis* isolates into four zymodemes and revealed genetic heterogeneity between the Iranian isolates. These variations are related to the clinical manifestation, pathogenicity, drug susceptibility and host specificity. G6PD isoenzyme pattern had the most homogeneity, while ME and PGM isoenzyme pattern had the most heterogeneity in our study. The present study showed that *G. duodenalis* sub-assemblage AII was the predominant assemblage in Fars Province. This indicates an anthroponotic transmission from human to human was one of the main causes of giardiasis in this area. Health promotion, public education, improving sanitation conditions, personal hygiene, improving clean drinking water and food are important strategies that should be addressed to control and prevent giardiasis. Through this study, potentially important and useful data on the distribution of different genotypes and isoenzymes profiles of *G. duodenalis* in Iran were obtained. These data represent a significant advancement in the current understanding of the transmission of *G. duodenalis* assemblages in Iran and could aid in future studies for epidemiology, clinical management and prevention purposes.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

PENCIRIAN MOLEKUL DAN PROFIL ISOENZIM ISOLAT GIARDIA DUODENALIS DARIPADA PESAKIT DI WILAYAH FARS, IRAN

Oleh

MOHAMMAD RAYANI

Januari 2014

Pengerusi: Ngah Zasmy Unyah, Ph.D

Fakulti: Perubatan dan Sains Kesihatan

positif terhadap *G. duodenalis* berdasarkan peningkatan SSU-rDNA. Keputusan kaedah penjenisan menunjukkan sebanyak 32/40 (80%) pencilan adalah dari asemblaj AII manakala sebanyak 8/40 (20%) pencilan dikenal pasti sebagai asemblaj B berdasarkan jujukan DNA dari *gdh*. Analisis kaedah penjenisan menunjukkan taburan pencilan terhadap *G. duodenalis* adalah tertumpu kepada asemblaj A (khususnya sub-asemblaj AII), manakala pencilan selebihnya didapati lebih tertumpu kepada asemblaj B (khususnya sub-asemblaj BIII dan BIV). Satu isoenzim yang menyerupai corak isoenzim G6PD juga telah dikenal pasti. Manakala, dua jenis isoenzim yang menghasilkan corak isoenzim menyerupai isoenzim menyerupai isoenzim GPI dan MDH turut dikenalpasti. Terdapat juga tiga jenis isoenzim yang menyerupai korak isoenzim ME dan PGM juga telah dikenal pasti. Sejumlah empat jenis zimodem telah dikenal pasti daripada 15 pencilan *G. duodenalis* iaitu zimodem nombor 1 mempunyai 7 pencilan, zimodem nombor 2 mempunyai 2 pencilan, zimodem nombor 3 mempunyai 4 pencila dan zimodem nombor 4 mempunyai 2 pencilan. Kesimpulannya, hasil kajian ini mendapat *G. duodenalis* sub-asemblaj AII merupakan jenis asemblaj yang paling dominan di Wilayah Fars dan profil elektroforesis terhadap isoenzim menunjukkan kepelbagaian genetik wujud pada pencilan *G. duodenalis* dari Iran. Ini menunjukkan yang transmisi secara artroponotik iaitu dari manusia ke manusia adalah merupakan penyebab utama giardiasis di wilayah ini. Data yang diperolehi dari kajian ini akan dapat meningkatkan pemahaman yang sedia ada mengenai transmisi asemblaj *G. duodenalis* di Iran.
ACKNOWLEDGEMENTS

First of all, I thank Allah for giving me the strength and courage in completing everything that needed to be done for this research. Without his blessings and rahman, I would not be able to complete my research and thesis.

I am grateful to my supervisor Dr. Ngah Zasmy Unyah for his guidance and advice through all stages of my research work. I would also like to extend a special appreciation to my committee members: Prof. Dr. Gholam Reza Hatam, Prof. Dr. Wan Omar Abdullah and Associate Prof. Dr. Rukman Awang Hamat for their valuable guidance, support, suggestions and sharing their vast experiences that had assisted me in the completion of this thesis.

I would also like to take this opportunity to express my sincere thanks to all the members of the Department of Microbiology and Parasitology, Bushehr University of Medical Sciences, Department of Medical Parasitology and Mycology, Shiraz University of Medical Sciences and Department of Medical Microbiology and Parasitology, Universiti Putra Malaysia for the kind support throughout my study.

I would like to extend my heartfelt gratitude to my beloved family for their understanding and endless love.
I certify that ..

NORITAH OMAR, PhD
Associate Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 10 March 2014
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Ngah Zasmy Unyah, PhD
Senior Lecturer
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Gholam Reza Hatam, PhD
Professor
Medical School
Shiraz University of Medical Sciences, Iran
(Member)

Wan Omar Abdullah, PhD
Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

Rukman Awang Hamat, MD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by graduate student

I hereby confirm that:
• this thesis is my original work;
• quotations, illustrations and citations have been duly referenced;
• this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
• intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
• written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
• there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: _______________________ Date: 28 January 2014

Name and Matric No.: Mohammad Rayani GS: 19375
Declaration by Members of Supervisory Committee

This is to confirm that:
• the research conducted and the writing of this thesis was under our supervision;
• supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: ___________________________ Signature: ___________________________
Name of Chairman of Supervisory Committee ___________________________
Name of Member of Supervisory Committee ___________________________

Signature: ___________________________ Signature: ___________________________
Name of Member of Supervisory Committee ___________________________
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATIONS</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vii</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>viii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xviii</td>
</tr>
</tbody>
</table>

CHAPTER

1. INTRODUCTION
 1.1 Background of *Giardia duodenalis*
 1.2 Genetic heterogeneity of *Giardia*
 1.3 Problem statement
 1.4 Objectives
 1.4.1 General objective
 1.4.2 Specific objectives
 1.5 Hypothesis

2. LITERATURE REVIEW
 2.1 Life cycle and morphology of *Giardia duodenalis*
 2.2 Epidemiology of *Giardia duodenalis*
 2.3 Pathogenicity and clinical symptoms of *Giardia duodenalis*
 2.4 Diagnosis of *Giardia duodenalis*
 2.5 Treatment of *Giardia duodenalis*
 2.6 Prevention of *Giardia duodenalis*
 2.7 Characterization based on molecular studies
 2.7.1 Molecular characterization studies on *G. duodenalis* in Asia
 2.7.2 Molecular characterization studies on *G. duodenalis* in Africa
 2.7.3 Molecular characterization studies on *G. duodenalis* in Latin America
2.7.4 Molecular characterization studies on *G. duodenalis* in Europe 21
2.7.5 Molecular characterization studies on *G. duodenalis* in Australia 25
2.8 Characterization based on biochemical studies 27

3 MATERIALS AND METHODS/METHODOLOGY 34
3.1 Sample collection 34
 3.1.1 Sample size 34
 3.1.2 Collection of sample 34
 3.1.3 Application of ethical clearance 35
3.2 Parasitological techniques 35
 3.2.1 Direct microscopy 35
 3.2.2 Concentration techniques 36
 3.2.2.1 Sedimentation techniques 36
 3.2.2.2 Sucrose gradient 36
3.3 Molecular techniques 38
 3.3.1 DNA extraction 38
 3.3.2 Molecular identification 38
 3.3.2.1 PCR amplification of SSU-rDNA gene 38
 3.3.2.2 Agarose gel electrophoresis 39
 3.3.3 Molecular genotyping 40
 3.3.3.1 PCR amplification of glutamate dehydrogenase (GDH) gene 40
 3.3.3.2 Sequence analysis of glutamate dehydrogenase (GDH) gene 40
 3.3.3.3 Phylogenetic analysis of glutamate dehydrogenase (GDH) gene 41
3.4 Biochemical techniques 43
 3.4.1 Axenic culture of *G. duodenalis* 43
 3.4.1.1 TYI-S-33 medium (Trypticase, Yeast extract, Iron-Serum) 43
 3.4.1.2 Excystation 44
 3.4.1.3 Mass cultivation of *G. duodenalis* 44
 3.4.2 Harvesting *G. duodenalis* 45
 3.4.3 Extraction of soluble enzymes 45
 3.4.4 Isoenzyme electrophoresis 46
 3.4.4.1 Gel preparation 46
 3.4.4.2 Samples insertion 46
 3.4.4.3 Electrophoretic techniques 47
3.4.4.4 Enzymes staining
3.4.4.5 Staining reaction

3.4.5 Molecular characterization of cultured
G. duodenalis isolates

3.4.5.1 PCR amplification of SSUr-DNA gene
3.4.5.2 Sequence and phylogenetic analysis of SSU-rDNA gene

4 RESULTS

4.1 Parasitological methods
4.1.1 Microscopic examination

4.2 Molecular examination
4.2.1 Molecular identification
4.2.2 Molecular genotyping
4.2.2.1 Sequence analysis of glutamate dehydrogenase (GDH) gene
4.2.2.2 Phylogenetic analysis of glutamate dehydrogenase (GDH) gene

4.3 Biochemical characterization
4.3.1 Axenic culture of *G. duodenalis*
4.3.2 Isoenzyme electrophoresis
4.3.2.1 Isoenzyme electrophoresis of G6PD
4.3.2.2 Isoenzyme electrophoresis of GPI
4.3.2.3 Isoenzyme electrophoresis of MDH
4.3.2.4 Isoenzyme electrophoresis of ME
4.3.2.5 Isoenzyme electrophoresis of PGM

4.3.3 Molecular identification on cultured
G. duodenalis isolates
4.3.3.1 PCR amplification of SSU-rDNA gene
4.3.3.2 Sequence and phylogenetic analysis of SSU-rDNA gene

5 DISCUSSION

5.1 Molecular characterization
5.2 Biochemical characterization

6 SUMMARY, CONCLUSION AND RECOMMENDATIONS FOR FUTURE RESEARCH
REFERENCES/BIBLIOGRAPHY 92
APPENDICES 106
BIODATA OF STUDENT 127
LIST OF PUBLICATION 128