

UNIVERSITI PUTRA MALAYSIA

ENHANCING ULTRASOUND IMAGES FOR BETTER INTERPRETATION OF BREAST CANCER

FARZAN KHATIB

FPSK(p) 2012 21

ENHANCING ULTRASOUND IMAGES FOR BETTER INTERPRETATION OF BREAST CANCER

FARZAN KHATIB

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Doctor of Philosophy

September 2012

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Doctor of Philosophy

ENHANCING ULTRASOUND IMAGES FOR BETTER INTERPRETATION OF BREAST CANCER

By

FARZAN KHATIB

September 2012

Chair: Prof. Rozi Mahmud, PhD

Faculty: Medicine and Health Sciences

This work was carried out with the aim to help radiologists in ultrasonography in diagnosing breast diseases. In particular, the study was done to improve their efficiency in interpreting results. As the work concerns with identifying breast disease, the focus is on B-Mode ultrasound that is suitable for breast. Thus, to improve the interpretation of results, a multi-purpose multi-tissue breast phantom is used to capture all the combinations of possible functions in the B-Mode.

In the first step, ultrasound images were captured using a Quality multi tissue equivalent Breast Phantom that contains all the needed specifications. All the possibilities for grey scale images were used on some ultrasound machines. In order to check the quality of image, a variety of transducers were used with different frequency responses and the same frequency setting. This work focused on two lesion types, namely, Cyst and Solid, besides other specifications of Phantom.

A review of previous research on breast disease has shown that most of them have been done on modalities other than ultrasound, specifically on mammography and digital mammography. Although some work has been done on ultrasound, these are rather limited to very special cases in kidney and abdomen.

In order to enhance ultrasound breast image, image factors such as Signal to Noise Ratio (SNR) and Receiver Operating Characteristic (ROC) analysis like sensitivity, specificity, and accuracy were used. Meanwhile, classification of the masses was done based on the features that were extracted from two types of images, namely, phantom images and real human breast images. Then, the proposed designed was applied to all the images and the output data (benign or chance of malignancy) were gathered. After classifying the masses, a set of samples was selected to make the required tests for the current work, such as the ROC analysis.

As breast disease is one of the deadliest reasons for death among women in most societies, the aim of the present work was on aiding the radiologists in checking and detecting some of these abnormalities. Findings showed an improved sensitivity of 99% and an enhanced accuracy of 98% for Ultrasound Phantom images. Evaluation of results for breast Ultrasound images also gave 98.5% for sensitivity and 98.2% for accuracy. So a powerful and reliable Computer Assisted Detection framework was introduced. In addition to these results, a full machine performance evaluation was done based on the findings of the proposed routines. Finally, regarding to this thesis findings, Ultrasound can be a good screening modality as the first row image modality in breast imaging.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

PENINGKATAN IMEJ ULTRA BUNYI UNTUK MENINGKATKAN KESAN INTERPRETASI KANSER PAYUDARA

Oleh

FARZAN KHATIB

September 2012

Pengerusi : Prof. Rozi Mahmud, PhD

Fakulti : Perubatan Dan Sains Kesihatan

Kajian ini dijalankan bertujuan untuk membantu ahli radiologi melaksanakan ujian ultrasonografi dalam mengenal pasti penyakit payudara. Secara khususnya, kajian ini dijalankan bagi meningkatkan kecekapan instrumen dalam mentafsirkan keputusan ujian. Oleh kerana kajian ini berhubung kait dengan kaedah bagi mengenalpasti penyakit payudara, fokus utama adalah kepada ultrabunyi Mod B yang sesuai untuk payudara. Justeru, bagi meningkatkan tafsiran keputusan ujian, tisu pelbagai payudara phantom pelbagai guna digunakan untuk mencerap semua kebarangkalian kombinasi fungsi dalam Mod B.

Sebagai langkah permulaan, imej ultrabunyi dirakam menggunakan tisu pelbagai payudara *Phantom* berkualiti yang mengandungi semua

V

spesifikasi diperlukan. Segala kebarangkalian kepada imej berskala kelabu digunakan ke atas beberapa mesin ultrabunyi. Bagi memeriksa kualiti imej, pelbagai transduser digunakan dengan tindak balas frekuensi yang berbeza dan penetapan frekuensi yang sama. Kajian ini memberi tumpuan kepada dua jenis lesi iaitu Sista dan Pepejal di samping spesifikasi *Phantom* yang lain.

Kajian terhadap penyelidikan mengenai penyakit payudara sebelum ini menunjukkan bahawa sebahagian besar daripada kajian tersebut telah dilakukan ke atas kaedah selain daripada ultrabunyi, khususnya ke atas mamografi dan mamografi digital. Walaupun beberapa kajian telah dilakukan ke atas ultrabunyi, ia agak terhad kepada kes-kes terpilih di dalam buah pinggang, perut dan payudara.

Dalam usaha untuk meningkatkan imej ultrabunyi payudara, faktor imej analisis Isyarat kepada Nisbah Bunyi (SNR) dan Penerima Operasi Ciri-ciri (ROC) seperti sensitiviti, pengkhususan dan ketepatan digunakan. Sementara itu, klasifikasi jisim dibuat berdasarkan ciri-ciri yang telah diekstrak daripada dua jenis imej iaitu imej *Phantom* dan imej payudara. Kemudiannya, satu reka bentuk cadangan digunakan kepada semua imej dan data output (benigna atau kehadiran malignansi) yang dikumpulkan. Setelah klasifikasi jisim dibuat, satu set sampel dipilih untuk dibuat ujian yang diperlukan dalam kajian semasa seperti analisis ROC. Oleh kerana penyakit payudara adalah salah satu penyebab utama kematian di kalangan wanita dalam kebanyakan masyarakat, kajian ini dijalankan dengan tujuan utama untuk membantu pakar radiologi dalam memeriksa dan mengesan sebarang keadaan abnormal yang wujud. Dapatan kajian menunjukan peningkatan sensitiviti sebanyak 99% dan juga peningkatan ketepatan sebanyak 98% bagi imej-imej ultrasound phantom. Penilaian terhadap keputusan imej-imej ultrasound juga memberi peningkatan sebanyak 98% bagi sensitiviti dan 98.2% bagi ketepatan. Oleh itu, rangka pengesanan menggunakan komputer telah satu Selain daripada dapatan kajian tersebut, satu diperkenalkan. penilaian mesin sepenuhnya juga telah dilakukan berdasarkan hasil kajian dari rutin yang dicadangkan. Berdasarkan dapatan kajian ini, ultrasound boleh menjadi satu pengimejan modaliti dan juga sebagai pengimejan modaliti utama di dalam pengimejan payudara.

ACKNOWLEDGEMENTS

First of all, I would like to express my greatest gratitude to ALLAH almighty, for his help and support during the course of life and the moment of truth.

I want to thank my supervisor Prof. Dr. Rozi Mahmud. It has been an honor to be her Ph.D. student. I appreciate all her contributions of time and ideas to make my Ph.D. experience productive and stimulating. The joy and enthusiasm she has for her research was contagious and motivational for me, even during tough times in the Ph.D. pursuit.

I would like to thank my supervisory committee members: Assoc. Prof. Dr. M.Iqbal Saripan, Assoc. Prof. Dr. Raja Syamsul Azmir Raja Abdullah and Dr. Syamsiah Mashohor for their time, helpful comments and invaluable guidance and constructive criticisms throughout the success of this project.

Lastly, I would like to thank my family for all their love and encouragement; for my parents who raised me and supported me in all my pursuits. And most of all for my loving, supportive, encouraging, and patient wife and daughter, Firouzeh and Negin, whose faithful support during the final stages of this Ph.D., is so appreciated. Thank you.

viii

I certify that a Thesis Examination Committee has met on 11 September 2012 to conduct the final examination of Farzan Khatib on his thesis entitled " **ENHANCING ULTRASOUND IMAGES FOR BETTER INTERPRETATION OF BREAST CANCER** " in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universit Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Johnson Stanslas

Associate Professor Faculty of Medicine and Health Science Universiti Putra Malaysia

Abd Rahman bin Ramli

Associate Professor Faculty of Engineering Universiti Putra Malaysia

Arsmah Ibrahim

Professor Faculty of Mathematics and Computer Science Universiti Technologi Mara

SEOW HENG FONG, PHD

Professor and Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date:

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for degree of **Doctor of Philosophy**. The members of the Supervisory Committee were as follows:

Rozi Mahmud, PhD

Professor Faculty of Medicine and Health Science Universiti Putra Malaysia (Chairman)

M.Iqbal Saripan, PhD

Associate Professor Faculty of Engineering Universiti Putra Malaysia (Member)

Raja Syamsul Azmir b. Raja Abdullah, PhD

Associate Professor Faculty of Engineering Universiti Putra Malaysia (Member)

Syamsiah bt. Mashohor, PhD

Senior Lecturer Faculty of Engineering Universiti Putra Malaysia (Member)

BUJANG BIN KIM HUAT, PhD

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date:

DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

LIST OF TABLES

Table3.1:Selected frequencies on each transducer	Page 81
3.2:Contrast parameter and its examined range	83
3.3:Machines coding	101
3.4:Modes of Operations	101
3.5:Probes (Transducers)	102
3.6:Applied frequencies	102
3.7:Impuls <mark>e responses of the ideal</mark> frequency selective linear pha	ase 120
3.8:Windows of order m	121
3.9:Data for the posterior echo	159
3.10:Mass Detection	164
4.1 (a) First and (b) second radiologist	170
4.2 Actual Image Depth	173
4.3 Posterior result	178
4.4 Edge artifact result	179
4.5 Comparison of Final result	179
4.6 Posterior result	186
4.7 Edge artifact result	187
4.8 Final result	188
4.9 (A) ROC data	191
4.10 (A) ROC data	191
4.11 (B) ROC data	193
4.12 (B) ROC data	193
4.13 (C) ROC data	195
4.14 (C) ROC data	195
4.15 (D) ROC data	196
4.16 (D) ROC data	196
4.17 (E) ROC data	198

Table	Page
4.18 (E) ROC data	198
4.19 (F) ROC data	199
4.20 (F) ROC data	200
4.21 (BASIC) ROC data	201
4.22 (BASIC) ROC data	202
4.23 (TISSUE HARMONY) ROC data	203
4.24 (TISSUE HARMONY) ROC data	203
4.25 (SPATIAL) ROC data	204
4.26 (SPATIAL) ROC data	204
4.27 (COMPOUND) ROC data	205
4.28 (COMPOUND) ROC data	206
4.29 (LFP) ROC data	207
4.30 (LFP) ROC data	208
4.31 (HFP) ROC data	208
4.32 (HFP) ROC data	209
4.33 (OVERALL) ROC data	211
4.34(OVERALL) ROC data	211
4.35 (BREAST) ROC data	213
4.36(BREAST) ROC data	213

LIST OF FIGURES

Figure	Page
1.1: The anatomy of breast	2
1.1: The basic anatomy of breast	3
1.3: Normal skin	4
1.4: Calcification in benign epithelium	11
1.5: Stromal calcifications	12
1.6: Calcifications in fibrocystic change	12
1.7: Branc <mark>hing calc</mark> ifications in ductal carcinoma in situ	12
1.8: Breas <mark>t tumour</mark>	13
1.9: A typical progression of breast tissues	14
1.10: A simple cyst	16
1.11: Invasive Ductal Carcinoma	18
1.12: Stromal fibrosis	19
1.13: Fibroadenoma	20
1.14: Invasive Ductal Carcinoma	21
1.15: Ductal Ca <mark>rcinoma in situ</mark>	21
1.16: The mam <mark>mography imaging chain</mark>	27
1.17: Thermal balance	24
1.18: A sample of th <mark>e ultraso</mark> und machine	29
1.19: A linear transducer	34
1.20: The spatial resolution	35
2.1: Original image	54
2.2: Enhanced image	54
2.3: Original image	57
2.4: Enhanced image	57
2.5: A comparison of the 4 imaging techniques	58
2.6: Breast Lesion	68
3.1: General Purpose Multi Tissue Ultrasound Phantom	79
3.2: Machine A with a full screen	84
3.3: Machine B with a full screen	85
3.4: Machine C with a full screen	85
3.5: Machine D with a full screen	86

Figure	Page
3.6: Machine E with a full screen	87
3.7: Machine F with a full screen	87
3.8: The DTHI concept	89
3.9: Ultrasound	89
3.10: Low frequency probe at 6MHz	92
3.11: Low frequency probe at 8MHz	92
3.12: High frequency probe at 9MHz	93
3.13: High frequency probe at 10MHz	93
3.14: High frequency probe at 14MHz	93
3.15: Low frequency probe at 8MHz and contrast	t 42 94
3.16: Low frequency probe at 8MHz and contrast	t 60 94
3.17: Low frequency probe at 8MHz and contrast	t 78 95
3.18: Low frequency probe at 8MHz and contrast	t 102 95
3.19: The main chart of CAD	98
3.20: Phantom image analyses	100
3.21: Phantom image analyses (cont)	103
3.22: Contrast Table	105
3.23: A comparison between DICOM and JPG im	lages 107
3.24: Pre-processing and filtering	111
3.25: Contrast stretching	114
3.26: Window filtering	122
3.27: Rectangular window	123
3.28: Hanning window	124
3.29: Hamming window	124
3.30: Blackman window	125
3.31: Segmentation	129
3.32: Segmentation and edge detection	130
3.33: Surface Area	135
3.34: Reduction in the surface area versus radiu	s 135
3.35: Classification	141
3.36: Signature of a rectangle	143
3.37: Signature of an ellipse	143
3.38: Irregular shape	144
3.39: The estimate shape	145
3.40: The horizontal lines	146

\bigcirc

Figure	Page
3.41: The estimate shape (cont)	147
3.42: The vertical lines	148
3.43: The estimate shape (cont)	150
3.44: Posterior acoustic enhancement behind a benign	152
3.45: Posterior acoustic shadowing behind a solid	152
3.46: A simple Cyst	153
3.47: A simple cyst with a very round shape	153
3.48: Solid Lesions – Benign	154
3.49: Solid Mass – Malignant	155
3.50: Solid benign and its appearance	156
3.51: Solid malignant and its appearance	156
3.52: Posterior shadowing – malignant	157
3.53: A cystic benign with a posterior enhancement	158
3.59: Mass Detection	162
4.1 Comparison of machines performance over LFP	169
4.2 Comparison of machines performance over HFP	169
4.3 Interpolation in Low frequency	172
4.4 Interpolation in High frequency	172
4.5 Split image	174
4.6 Image histogram	174
4.7 Equalized image	175
4.8 2D Median	175
4.9 Contrast stretching	175
4.10 Thresholded image	176
4.11 Filtered image	176
4.12 Filter magnitude response	176
4.13 Center of mass	176
4.14 Detected mass surface	177
4.15 Detected mass	177
4.16 Outline of mass	177
4.17 Mass Signature	178
4.18 Outlined mass	178
4.19 Cystic sample	180
4.20 Split image	181
4.21 Improved contrasts	181

Figure	Page
4.22 Filtered output	183
4.23 Threshold	182
4.24 Filling holes	183
4.25 Estimating mass	184
4.26 Morphological operation	184
4.27 Mass outline	185
4.28 Outlined Mass	185
4.29 Estimating shape	185
4.30 ROC for ROI machine A	191
4.31 ROC for Auto machine A	191
4.32 ROC for ROI machine B	193
4.33 ROC for Auto machine B	193
4.34 ROC for ROI machine C	194
4.35 ROC for Auto machine C	195
4.36 ROC for ROI machine D	196
4.37 ROC for Auto machine D	196
4.38 ROC for ROI machine E	197
4.39 ROC for Auto machine E	198
4.40 ROC for ROI machine F	199
4.41 ROC for Auto machine F	200
4.42 ROC for ROI Basic Mode	201
4.43 ROC for Auto Basic Mode	202
4.44 ROC for ROI Tissue harmony	202
4.45 ROC for Auto Tissue harmony	203
4.46 ROC for ROI Spatial	204
4.47 ROC for Auto Spatial	204
4.48 ROC for ROI Compound	205
4.49 ROC for Auto Compound	205
4.50 ROC for ROI LF probe	207
4.51 ROC for Auto LF probe	208
4.52 ROC for ROI HF probe	208
4.53 ROC for Auto HF probe	209
4.54 ROC of ROI Overall performance	211
4.55 ROC of Auto Overall performance	211
4.56 ROC of ROI Breast image	212

C

LIST OF ABBREVIATIONS

3D	Three Dimensional
AED	Automatic Exposure Control
AUC	Area Under Curve
BCDDP	Breast Cancer Detection and Demonstration
BMP	Bit Map
BP	Band Pass
BSE	Breast Self Examination
BSGI	Breast Specific Gamma Imaging
BUS	Breast Ultrasound
CAD	Computer Aided Detection
CADG	Computer Aided Diagnosis
CE	Computer Enhancement
СТ	Computed Tomography
DCIS	Ductal Carcinoma In Situ
	Digital Imaging and Communications in
DICOM	Medicine
DPI	Dot Per Inch
DTHI	Differential Tissue Harmony
EFV	Extended Field of View
FCD	Fibrocystic Disease
FIR	Finite duration Impulse Response
FP	False Positive
FTI	Fatty Tissue Imaging

GEN	General
GIF	Graphic Interchange Format
HC	High Contrast
HF	High Frequency
HFP	High Frequency Probe
НР	High Pass
HRT	Hormone Replacement Therapy
HVC	Human Vision Characteristic
IDC	Infiltrating Ductal Carcinoma
IIR	Infinite duration Impulse Response
ILC	Infiltrating Lobular Carcinoma
IR	Infra Red
JPEG	Joint Photographic Experts Group
LC	Low Contrast
LCIS	Lobular Carcinoma In Situ
LF	Low Frequency
LFP	Low Frequency Probe
LP	Low Pass
LUT	Look Up Table
MATLAB	Matrix Laboratory
MC	Medium Contrast
MD	Medical Doctor
MRI	Magnetic Resonance Imaging
MSE	Mean Square Error

NEMA	National Electrical Manufacturers Association
PEN	Penetration
PNG	Portable Network Graphics
PSNR	Peak Signal to Noise Ratio
PSTHI	Pulse Subtraction Tissue Harmony Imaging
PWD	Pulse Wave Doppler
RAW	Raw Image Format
RES	Resolution
ROC	Receiver Operating Characteristic
ROI	Region Of Interest
SF	Subcutaneous Fat
SID	Source to Image Distance
SNR	Signal to Noise Ratio
SRI	Speckle Reduction Imaging
TIF	Tagged Image File Format
US	Ultrasound
VE	Virtual Environment

TABLE OF CONTENTS

Page
ii
V
viii
ix
xi
xii
xiv
xviii

CHAPTER		
1	INTRODUCTION	
	Breast Anatomy	1
	Breast Cancer	5
	Imaging Modality	8
	Pathology	10
	Breast Masses	13
	Cystic Mass	14
	Solid Mass	18
	Breast Imaging	21
	Mammography/Digital Mammography	22
	Magnetic Resonant Imaging	23
	Infra Red Imaging	24
	3D Microwave Imaging	25
	Ultrasound	25
	Tomosynthesis	27
	Nuclear Imaging	28
	Ultrasound Machines	29
	Modes of Operations	29
	B-Mode	31
	Transducers	32
	Frequency Range and Resolution	35
	Problem Statement	37
	Aim and Objective	39
	Outline of thesis	41
2	MEDICAL IMAGE PROCESSING	43
	Introduction	43
	Pre-processing	47
	Why ultrasound	58

		Page
М	ass classification and Computer Assisted detection	65
St	ummary	75
3 M	ATERIALS AND METHODS	77
Fi	nding a suitable phantom	78
U	ltrasound Machines	79
	Frequency	80
	Contrast	82
	Modes of operation	83
С	apturing Ultrasound Images	90
S	vstem Flowchart	97
Pt	reparing Ultrasound Images	98
	Contrast Look-Up Table	103
	Input Image File Format	106
Pt	re-processing and Filtering	109
	Histogram Equalization	110
	Median Filtering	112
	Contrast Stretching	113
	Band Pass Filtering	115
	FIR Band Pass Filter	116
	Windowing Method	119
Se	egmentation	125
	Thresholding	127
	Morphological Image Processing	131
	Edge Detection	136
C	lassification	139
	Estimating Shape	142
	Shadowing and Posterior Echo	151
4 R	ESULTS AND DISCUSSION	165
M	achine Performance	165
	Machine A	166
	Machine B	166
	Machine C	166
	Machine D	167
	Machine E	167
	Machine F	168
Co	omparison	168
In	terpolation	171
Ima	age depth	173
Pha	antom image output	174
Rea	al Ultrasound Breast image	180

		Page
	ROC analysis	190
	Machine A	191
	Machine B	193
	Machine C	194
	Machine D	196
	Machine E	197
	Machine F	199
	Performance in different modes	200
	Basic (Mode B)	201
	Tissue Harmony (Mode T)	202
	Spatial Compound (Mode S)	203
	Compound (Mode C)	205
	Probe performance	207
	LF Probe	207
	HF Probe	209
	Over all performance	210
	Ultrasound Breast images	213
5	SUMMARY, CONCLUSION AND FUTURE STUDY	215
	Summary	215
	Conclusion	221
	Further studies	223
REFERENCES / BIBLIOGRAPHY		224
APPENDIX A		231
APPENDIX B		242
BIODATA OF STUDENT		243
LIST OF PUBLICATIONS		245

C