EFFECTS OF A VITAMIN D ANALOG ON GLYCAEMIC CONTROL AND IMMUNE RESPONSE IN TYPE 1 DIABETIC CHILDREN AND ADOLESCENTS FROM IRAN

ASAL ATAIE-JAFARI

FPSK(p) 2012 20
EFFECTS OF A VITAMIN D ANALOG ON GLYCAEMIC CONTROL AND IMMUNE RESPONSE IN TYPE 1 DIABETIC CHILDREN AND ADOLESCENTS FROM IRAN

ASAL ATAIE-JAFARI

DOCTOR OF PHILOSOPHY
UNIVERSITI PUTRA MALAYSIA

2012
EFFECTS OF A VITAMIN D ANALOG ON GLYCAEMIC CONTROL AND
IMMUNE RESPONSE IN TYPE 1 DIABETIC CHILDREN AND
ADOLESCENTS FROM IRAN

BY

ASAL ATAIE-JAFARI

Thesis submitted to the School of Graduate Studies, Universiti Putra Malaysia, in
fulfillment of the Requirements for the Degree of Doctor of Philosophy

Agust 2012
DEDICATION

I dedicate this thesis to my dearest parents, Afsaneh and Mohammad, who has supported me unconditionally in this journey, and to my beloved husband, Omid Chouhdari, for his immense support, patience, and encouragement.
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement of degree of Doctor of Philosophy

EFFECTS OF A VITAMIN D ANALOG ON GLYCAEMIC CONTROL AND IMMUNE RESPONSE IN TYPE 1 DIABETIC CHILDREN AND ADOLESCENTS FROM IRAN

By

ASAL ATAIE-JAFARI

AGUST 2012

Chairman: Prof. Asmah Binti Rahmat, PhD
Faculty: Medicine and Health Sciences

Type 1 diabetes mellitus (T1DM) results from autoimmune destruction of insulin producing pancreatic β-cells. At the time of T1DM diagnosis, although the majority of β-cells have been destroyed, some still produce insulin. A treatment that could protect β-cell function or decrease autoimmune destruction would provide important progress in T1DM therapy. Vitamin D has been known as an immunomodulator in this disease, which blockades β-cells destruction. In children with T1DM, vitamin D treatment produces moderate protective effects on residual β-cell function. However, limited doses can be used because of its hypercalcemic effect. This study investigated whether treatment with a vitamin D analog (1-α-hydroxyvitamin D₃) or alfacalcidol, can improve glycemic control and β-cell preservation, as well as improvements in immune responses. In this single-blind and placebo-controlled clinical trial, 60 patients (aged 8-18 years) with recent-onset T1DM were
randomized to alfacalcidol (2 × 0.25 μg/day) or placebo, and followed up for 6 months. All patients received conventional insulin therapy, and insulin dosage was adjusted every two weeks. Dietary vitamin D intakes and sun exposure were assessed at baseline. Insulin requirement, as well as serum 25(OH)D, fasting C-peptide (FCP), hemoglobin A1C (HbA1C), interleukin-1β (IL-1β), interleukin-2 (IL-2), transforming growth factor β1 (TGF-β1), interferon-gamma (IFN-γ), and glutamic acid decarboxylase (GAD65) autoantibody were assessed at baseline, and again 3 months and 6 months after the intervention. Repeated measures ANOVA was used to compare the alfacalcidol and placebo groups across time points during 6 months of intervention. Fifty-three patients completed the study. All patients were vitamin D deficient (77%) or insufficient (23%) at baseline. In a logistic regression model, it was shown that the risk of being vitamin D deficient was significantly decreased by sunlight exposure ≥ 15 minutes during the weekends versus < 15 minutes (odds ratio [OR]: 0.059 [95% confidence interval [CI]: 0.01–0.75]; P= 0.03). Serum 25(OH)D dropped 19.7% and 39.2% in alfacalcidol and placebo group respectively, however the difference between groups was not significant [F(1,51) = 1.69; P= 0.195]. HbA1C also decreased in both groups throughout the study as expected. Serum levels of FCP increased in both groups after 3 months of study, and then dropped from 0.49 ± 0.18 to 0.33 ± 0.15 ng/ml during moth 3 to month 6 (P= 0.003; unpaired t-test) in the placebo group, however it remained unchanged in the alfacalcidol group (P > 0.05). Insulin requirement per body weight did not change significantly in the placebo group; however, it decreased in the alfacalcidol group during the first two months of study, and then increased slightly by the end of 6 months follow-up. Changes of insulin requirement per body weight was significant
across groups over 6 months of intervention \([F_{(1,51)}= 4.2; P= 0.017]\). Serum levels of IL-1\(\beta\) was unchanged in the placebo group, but decreased in the alfacalcidol group throughout the study. Changes of serum IL-1\(\beta\) was significant across groups over 6 months of intervention \([F_{(1,51)}= 4.88, P= 0.010]\). Serum concentrations of IL-2 did not change significantly in the alfacalcidol group during 6 months of the study (Friedman test, \(P= 0.169\)), but the trend of changes was highly significant in the placebo group (Friedman test, \(P < 0.001\)). The two-way repeated measures ANOVA also showed significant differences in serum TGF-\(\beta\)1, IFN-\(\gamma\), and GAD\(_{65}\) autoantibody changes between the alfacalcidol and the placebo group during 6 months of study \((P= 0.045, P= 0.006, P= 0.006; \text{respectively, for interaction between time and group})\). Serum TGF-\(\beta\)1 dropped from 115.5 ± 35.5 to 89.3 ± 35 pg/ml in the placebo group over 6 months of intervention \((P= 0.012)\), but it remained unchanged in the alfacalcidol-treated patients. Conversely, serum IFN-\(\gamma\) was unchanged in the alfacalcidol group during 6 months of trial, but increased significantly in the placebo group. Serum levels of GAD\(_{65}\) autoantibody decreased in both groups, with a higher rate in the alfacalcidol-treated patients. Six months treatment of newly diagnosed T1DM children with 1-\(\alpha\)-(OH)D\(_3\) seems to preserve \(\beta\)-cells function, and result in lower insulin requirement probably through induction of a shift from Th-1 to Th-2 cytokines produced by the autoimmune T cells.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah.

KESAN ANALOG VITAMIN D KE ATAS PENGAWALAN GULA DARA

DAN TINDAK BALAS SISTEM IMUNISASI TERHADAP KANAK-KANAK

DAN REMAJA DIABETES JENIS 1 DARI IRAN

Oleh

ASAL ATAIE-JAFARI

AGUST 2012

Pengerusi : Prof. Asmah Binti Rahmat, PhD
Fakulti : Perubatan dan Sains Kesihatan

Diabetes mellitus jenis 1 (T1DM) terjadi disebabkan oleh kemusnahan sistem immunisasi automatik sel beta pankreas yang menghasilkan insulin. Semasa diagnosis, walaupun kebanyakan sel beta telah musnah, sesetengah daripadanya masih menghasilkan insulin. Rawatan yang dapat melindungi fungsi sel beta atau mengurangkan kemusnahan sistem immunisasi automatik akan memberikan resolusi penting dalam rawatan T1DM. Vitamin D telah dikenalpasti sebagai pengawal immunisasi bagi penyakit ini, yang mana ianya dapat menghalang kemusnahan sel beta. Bagi kanak-kanak yang menghidap T1DM, rawatan menggunakan vitamin D dapat menghasilkan kesan perlindungan yang sederhana pada fungsi sel beta yang masih ada. Kajian ini dijalankan untuk mengenalpasti sama ada rawatan menggunakan analog vitamin D (1-α-hidroksivitamin D₃) atau alfakalsidol, boleh meningkatkan kawalan gula dalam darah serta tindak balas sistem imunisasi. Dalam
kajian klinikal ini, 60 pesakit (berumur 8-18 tahun) yang baru sahaja didiagnosis mempunyai T1DM telah dibahagikan secara rawak kepada 2 kumpulan: alfakalsidol (2 × 0.25 µg/hari) atau plasebo, dan diikuti dengan 6 bulan pemeriksaan susulan. Kesemua pesakit akan menerima rawatan insulin terapi konvensional, dan dos insulin diubah setiap 2 minggu. Pengambilan diet vitamin D dan kadar pendedahan kepada cahaya matahari diukur pada permulaan kajian. Keperluan insulin serta serum 25(OH)D, C-peptida semasa puasa (FCP), hemoglobin A1C (HbA1C), interleukin-1β (IL-1β), interleukin-2 (IL-2), faktor yang merubah pertumbuhan β1 (TGF-β1), interferon-gamma (IFN-γ), dan asid glutamik dekarboksilase (GAD65) antibodi automatik telah diukur pada peringkat awal, bulan ke-3 dan bulan ke-6 rawatan intervensi. Repeated measures ANOVA telah digunakan untuk membandingkan alfacalcidol dan kumpulan placebo pada tempoh masa tertentu sepanjang 6 bulan rawatan intervensi ini. Lima puluh tiga pesakit telah berupaya melengkapkan kajian ini. Kesemua pesakit telah dikenalpasti sebagai kurang vitamin D (77%) atau mempunyai vitamin D yang tidak mencukupi (23%) pada awal kajian. Model regrasi logistik menunjukkan bahawa risiko bagi status kurang vitamin D adalah berkurang secara signifikan dengan pendedahan kepada cahaya matahari selama atau lebih dari 15 minit semasa hari minggu jika dibandingkan dengan pendedahan kepada cahaya matahari kurang dari 15 minit (nisbah kemungkinan [OR]: 0.059 [95% kadar keyakinan [CI]: 0.01–0.75]; P= 0.03). Serum 25(OH)D berkurang sebanyak 19.7% bagi kumpulan alfacalcidol dan 39.2% bagi kumpulan plasebo. Walau bagaimanapun, tiada perbezaan secara signifikan ditemui [F(1,51)= 1.69; P= 0.195]. Nilai HbA1C juga berkurangan bagi kedua-dua kumpulan sepanjang rawatan intervensi, dan seterusnya nilai tersebut menurun dari 0.49 ± 0.18
to 0.33 ± 0.15 ng/ml dari bulan ketiga hingga bulan keenam rawatan (P = 0.003) dalam kumpulan plasebo, namun nilai FCP tidak berubah bagi kumpulan alfakalsidol (P > 0.05). Keperluan insulin bagi berat jisim tubuh tidak berubah secara signifikan dalam kumpulan plasebo, namun nilai tersebut berkurangan dalam kumpulan alfakalsidol pada dua bulan pertama kajian, dan meningkat sedikit pada bulan keenam. Perubahan keperluan insulin bagi berat jisim tubuh adalah signifikan bagi kesemua kumpulan setelah 6 bulan rawatan intervensi [F(1,51) = 4.2; P = 0.017)]. Nilai serum IL-1β pula tidak berubah bagi kumpulan plasebo, tetapi menurun bagi kumpulan alfakalsidol sepanjang kajian dijalankan. Perubahan nilai serum IL-1β adalah signifikan bagi kesemua kumpulan sepanjang 6 bulan rawatan intervensi [F(1,51) = 4.88, P = 0.010]. Selain itu, kepekatan tidak berubah secara signifikan bagi kumpulan alfakalsidol sepanjang 6 bulan rawatan intervensi (ujian Friedman, P = 0.169), tetapi nilai perubahan serum IL-2 mempunyai signifikan yang ketara bagi kumpulan plasebo (ujian Friedman, P < 0.001). Analisis ANOVA juga menunjukkan perbezaan perubahan yang signifikan dalam nilai serum TGF-β1, IFN-γ, dan GAD₆₅ antibodi automatik antara kumpulan alfakalsidol dan kumpulan plasebo (P = 0.045 bagi TGF-β1; P = 0.006 bagi IFN-γ; P = 0.006 bagi GAD₆₅ bagi perkaitan antara masa serta kumpulan). Nilai serum TGF-β1 berkurangan dari 115.5 ± 35.5 to 89.3 ± 35 pg/ml bagi kumpulan plasebo setelah 6 bulan rawatan intervensi, tetapi tidak berubah bagi kumpulan alfakalsidol. Sebaliknya, nilai serum IFN-γ tidak berubah bagi kumpulan alfakalsidol setelah 6 bulan kajian, tetapi meningkat secara signifikan dalam kumpulan plasebo. Nilai serum GAD₆₅ antibodi automatik berkurangan bagi kedua-dua kumpulan, dengan kadar pengurangan yang lebih tinggi dalam kumpulan alfakalsidol. Oleh itu, enam bulan rawatan intervensi bagi kanak-kanak yang baru
didagnostika penyakit T1DM menggunakan 1-α-(OH)D3 berupaya untuk mengekalkan fungsi beta-sel, dan mengurangi keperluan insulin luar yang mana ianya mungkin disebabkan oleh induksi peralihan dari Th-1 kepada Th-2 sitokines yang terhasil daripada sel immunisasi automatik T.
ACKNOWLEDGEMENTS

This thesis would not have been possible without the support and encouragement of many people. First, I would like to express my gratitude to my supervisor, Prof. Dr. Asmah Rahmat, for her valuable support, encouragement, and supervision throughout this research.

I would like to express my deep appreciation to my supervisory committee members, Assoc. Prof. Dr. Zaitun Yassin and Assoc. Prof. Dr. Loke Seng Cheong for the guidance and assistance they provided at all levels of the research project.

I am greatly indebted and would like to thank my supervisor in Iran, Prof. Dr. Bagher Larijani who gave me the opportunity to work on this project and supported me throughout my research work. I also wish to express my gratitude to Dr. Arash Hossein-Nezhad, my committee member, for his help and support whenever needed, and for his valuable advice.

I would also like to thank the staff of the Endocrinology and Metabolism Research Institute (EMRI), Tehran University of Medical Sciences (TUMS), especially staffs in EMRI’s Biochemical and Hormonal Laboratory.

Special thanks goes to patients who participated in this research, and their parents, who followed throughout 6 months of research, and whom without, this project would not be possible.

My deepest gratitude goes to my family. I would like to thank my parents and my sister, Aliya, for their blessings and prayers from far away. Most importantly, my
special thanks go to my beloved husband, Omid, for his understanding, patience and steadfast support that have made the task of completing this PhD project possible.

I am also grateful to fellow colleagues in the Faculty of Medicine and Health Sciences for their assistance throughout my stay at Universiti Putra Malaysia. Finally, I thank all those who helped me directly or indirectly during the period of my study.
I certify that a Thesis Examination Committee has met on 9 August 2012 to conduct the final examination of Asal Ataie-Jafari on her thesis entitled “Effects of a vitamin D analog on glycaemic control and immune response in type 1 diabetic children and adolescents from Iran” in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee are as follows:

Amin bin Ismail, PhD
Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Norhaizan binti Mohd Esa, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Internal Examiner)

Musalmah binti Mazlan, PhD
Professor
Faculty of Medicine
Universiti Kebangsaan Malaysia
(External Examiner)

Michael Mathai, PhD
Associate Professor
School of Biomedical and Health Sciences
Victoria University Australia
(External Examiner)

SEOW HENG FONG, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia
Date: 28 August 2012

xii
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Doctor of Philosophy. The members of Supervisory committee were as follows:

Asmah Binti Rahmat, PhD
Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Zaitun Binti Yassin, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

Loke Seng Cheong, MD
Assistant Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

Bagher Larijani, MD
Professor
Endocrinology & Metabolism Research Center
Tehran University of Medical Sciences
(Member)

Arash Hossein-Nezhad, MD, PhD
Assistant Professor
Endocrinology & Metabolism Research Center
Tehran University of Medical Sciences
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I declare that the thesis is my original work except for quotation and citation, which have been duly acknowledged. I also declare that it has not been previously, and in not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institutions.

ATAIE

ASAL ATAIE-JAFARI

Date: 9 August 2012
TABLE OF CONTENTS

ABSTRACT iii
ABSTRAK vi
ACKNOWLEDGEMENTS x
APPROVAL xii
DECLARATION xiv
LIST OF TABLES xviii
LIST OF FIGURES xx
LIST OF APPENDICES xxii
LIST OF ABBREVIATIONS xxiii

CHAPTER

1 INTRODUCTION 1
1.1 Background 1
1.2 Problem statement 4
1.3 Significance of the study 5
1.4 Objectives of the study 6
1.5 Null hypotheses 7
1.6 Conceptual framework of the study 8

2 LITERATURE REVIEW 10
2.1 Type 1 diabetes mellitus 10
2.1.1 Clinical manifestation 11
2.1.2 Diagnosis 12
2.1.3 Treatment 12
2.1.4 Epidemiology of type 1 diabetes 18
2.1.5 Pathophysiology and etiology 20
2.1.6 Autoimmunity of type 1 diabetes mellitus 21
2.1.7 Genetic susceptibility 26
2.1.8 Environmental factors 29
2.2 Vitamin D 31
2.2.1 Vitamin D metabolism and sources 32
2.2.2 Normal levels, deficiency, and toxicity of vitamin D 35
2.2.3 Recommended daily intakes of vitamin D 36
2.2.4 Epidemiology of vitamin D deficiency 37
2.2.5 Vitamin D receptor (VDR) 39
2.2.6 Vitamin D and immune system 40
2.3 Vitamin D analogs 43
2.3.1 Therapeutic applications of vitamin D analogs 44
2.3.2 Alfacalcidol 45
2.4 Vitamin D and type 1 diabetes
 2.4.1 Vitamin D and prevention of type 1 diabetes mellitus
 2.4.2 Effects of vitamin D supplementation on glycemia in type 1 diabetes mellitus
 2.4.3 Immunomodulatory effects of vitamin D supplementation in type 1 diabetes mellitus
 2.4.4 Possible mechanisms of vitamin D action in type 1 diabetes mellitus

3 MATERIALS AND METHODS
 3.1 Ethical consideration
 3.2 Location of the study
 3.3 Screening and recruitment of patients
 3.3.1 Inclusion criteria
 3.3.2 Exclusion criteria
 3.4 Sample size
 3.5 Study design
 3.6 Instrumentation and data collection
 3.6.1 Socio-demographic questionnaire
 3.6.2 Medical evaluation
 3.6.3 Anthropometric measurements
 3.6.4 Food frequency questionnaire (FFQ)
 3.6.5 Sunlight exposure questionnaire
 3.6.6 Laboratory measurements
 3.7 Statistical analysis

4 RESULTS
 4.1 Flow diagram of the progress through the clinical trial
 4.2 Baseline characteristics of patients
 4.3 Possible side effects
 4.4 Weight measures
 4.5 Baseline dietary calcium and vitamin D intakes
 4.6 Baseline sunlight exposure
 4.7 Serum vitamin D
 4.7.1 Baseline serum vitamin D status
 4.7.2 Changes of serum vitamin D during alfalcacidol treatment
 4.8 Changes in glycemic variables during 6 months of trial
 4.8.1 Hemoglobin A1C (HbA1C)
 4.8.2 Fasting C-peptide (FCP)
 4.8.3 Insulin requirement to body weight
 4.9 Changes in immune variables during 6 months of trial
 4.9.1 Interleukine-1β (IL-1β)
 4.9.2 Interleukine-2 (IL-2)
 4.9.3 Transforming growth factor β (TGF-β1)
 4.9.4 Interferon gamma (IFN-γ)
4.9.5 Glutamic acid decarboxylase (GAD₆₅) autoantibody

5 DISCUSSION
5.1 The scope of This Study
5.2 Demographic characteristics
5.3 Side effects
5.4 Serum 25(OH)D
 5.4.1 Vitamin D status in patients
 5.4.2 Effects of alfacalcidol on serum vitamin D
5.5 Effects of alfacalcidol on glycemic variables
 5.5.1 Hemoglobin A1C (HbA1C)
 5.5.2 Fasting C-peptide (FCP)
 5.5.3 Insulin requirement to body weight
5.6 Effects of alfacalcidol on immune response
 5.6.1 Interleukine-1β (IL-1β)
 5.6.2 Interleukine-2 (IL-2)
 5.6.3 Transforming growth factor β1 (TGF-β1)
 5.6.4 Interferon gamma (IFN-γ)
 5.6.5 Glutamic acid decarboxylase (GAD₆₅) autoantibody

6 CONCLUSIONS, LIMITATION AND RECOMMENDATION FOR FUTURE RESEARCH
6.1 Conclusion
6.2 Recommendations for future works
6.3 Limitations to the study

BIBLIOGRAPHY
APPENDICES
BIODATA OF STUDENT