DISTRIBUTION OF SEROTYPES AND VIRULENCE GENES AMONG INVASIVE, NON-INVASIVE AND COLONIZING Streptococcus agalactiae (GROUP B STREPTOCOCCUS) ISOLATES FROM PATIENTS IN A MAJOR TEACHING HOSPITAL IN MALAYSIA

NARGES ESKANDARIAN

FPSK(m) 2014 2
DISTRIBUTION OF SEROTYPES AND VIRULENCE GENES AMONG INVASIVE, NON-INVASIVE AND COLONIZING Streptococcus agalactiae (GROUP B STREPTOCOCCUS) ISOLATES FROM PATIENTS IN A MAJOR TEACHING HOSPITAL IN MALAYSIA

By

NARGES ESKANDARIAN

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Master of Science

January 2014
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs, and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright©Universiti Putra Malaysia
DEDICATION

I dedicate this piece of work to my parents and my beloved husband Vahid. Thank you all for all your love, encouragement and support.

Love you with all my heart
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirements of the degree of Master Science

DISTRIBUTION OF SEROTYPES AND VIRULENCE GENES AMONG INVASIVE, NON-INVASIVE AND COLONIZING Streptococcus agalactiae (GROUP B STREPTOCOCCUS) ISOLATES FROM PATIENTS IN A MAJOR TEACHING HOSPITAL IN MALAYSIA

By

NARGES ESKANDARIAN

January 2014

Chairman: Syafinaz Amin Nordin, MBChB, MPath (Med. Microbiology)

Faculty: Medicine and Health Sciences

Streptococcus agalactiae also known as group B streptococcus (GBS) remains a significant cause of neonatal sepsis and meningitis worldwide. Approximately 30% of healthy women are colonized with GBS. Main reservoirs are the gastrointestinal and genitourinary tract. GBS pose major threat to the women during their prenatal stage, which are transmitted to fetus during delivery resulting in serious infections and occasional deaths in neonates. It causes early onset diseases (EOD) within 7 days of birth and late onset disease (LOD) from 7 to 90 days. Apart from pregnant women and neonates, GBS infections are also seen in immunocompromised, and elderly patients. Numerous prevention strategies for the control of GBS-related neonatal infections including antibiotic prophylaxis and vaccination have been practiced in many parts of the world. GBS strains vary from country to country; hence, there is a variation in serotype distribution, antibiotic susceptibility and virulence factors of GBS strains, which challenge the management of GBS related infections. In Malaysia, despite of several cases of GBS-related neonates’ infections, data concerning the serotype epidemiology, antibiotic susceptibility and the virulence pattern of local strains are lacking. Therefore, the current study was aimed at determining the serotypes, antibiogram and the virulent gene profile of Malaysian GBS strains. Hundred and three pure cultures of S. agalactiae were obtained from Universiti Kebangsaan Malaysia Medical Center (UKMMC) from June 2010 to October 2011, included 22 invasive, 23 non-invasive and 58 colonizing
strains were isolated from clinical samples. Capsular serotyping was performed with the latex agglutination method using specific antisera against types Ia, II-VII CPS antigens. The results of the conventional serotyping (CS) of the strains were further confirmed by molecular serotyping (MS). All conventionally identified serotypes were in agreement with the molecular serotype. Twenty (19.4%) isolates that were non-typable by CS, were also typed by MS. Serotype VI (22.3%), VII (21.3%) were the most common serotypes, and serotype IV (1%) was found to be the least. Antimicrobial susceptibility testing carried out to determine the susceptibility of GBS isolates revealed that all isolates were susceptible to penicillin by both disk diffusion and E-test methods. No resistance was observed for cefuroxime, ceftriaxone, levofloxacin and vancomycin, while resistance rate of 23.3%, 16.5% and 71.8% were seen for erythromycin, clindamycin and tetracycline respectively. Seven virulence genes (cylE, lmb, scpB, hylB, rib, bca, bac) screened on the studied isolates showed the presence of cylE, lmb, scpB and hylB in almost all the isolates while rib, bca, bac genes were found to be present in 29.1%, 14.6% and 9.7% of the isolates. The present study for the first time reports the detection of virulence genes in Malaysian strains. A significant association between rib gene and serotypes Ia, II, III and VI; bca with serotypes II, III and VI; bac with serotypes II and III were observed. In conclusion, this study demonstrated that VI and VII as the predominant serotypes in Malaysia, hence need to be considered while developing vaccines. The antibiotic susceptibility pattern showed local strains are susceptible to penicillin and demonstrated it still could be used as the first choice for GBS treatment. Significant association of virulence factors with certain serotypes need to be routinely monitored to reduce the GBS associated mortality.
TABURAN SEROTIP DAN GEN VIRULEN PADA ISOLAT *Streptococcus agalactiae* (STREPTOCOCCUS KUMPULAN B) INVASIF, TIDAK INVASIF DAN JAJAHAN DARIPADA PESAKIT HOSPITAL PENGAJARAN UTAMA DI MALAYSIA

Oleh

NARGES ESKANDARIAN

Januari 2014

Pengurusi: Syafinaz Amin Nordin, MBChB, MPath (Med. Microbiology)

Fakulti: Perubatan dan Sains Kesihatan

Streptococcus agalactiae juga dikenali sebagai streptococcus kampulan B (GBS), kekal sebagai penyebab utama sepsis neonat dan meningitis di seluruh dunia. Dianggarkan 30% wanita sihat adalah pembawa GBS. Organisma ini biasanya ditemui di dalam gastrousus dan saluran genitourinari. Wanita hamil yang membawa GBS berisiko untuk menjangkitkan organisma ini kepada fetus sewaktu proses kelahiran dan mengakibatkan jangkitan yang serius pada neonat serta kematian dalam sesetengah kes. GBS menyebabkan early onset disease (EOD) dalam tempoh tujuh hari kelahiran dan late onset disease (LOD) dari hari ketujuh hingga ke sembilan puluh kelahiran. Selain daripada wanita hamil dan neonat, jangkitan GBS juga dilihat di kalangan pesakit yang mengalami ketidakupayaan sistem imun mereka serta mereka yang berusia. Pelbagai strategi pencegahan untuk membasmi jangkitan GBS di kalangan neonat telah diamalkan di seluruh dunia, termasuk penggunaan antibiotik (prophylaxis) dan vaksin. Pelbagai faktor memberi cabaran untuk merawat jangkitan GBS, iaitu kepelbagaian serotip GBS, corak kerentanan antibiotik serta gen virulen yang berbeza dari satu negara ke negara yang lain. Di Malaysia, walaupun terdapat kes-kes jangkitan GBS di kalangan neonat, informasi tentang epidemiologi serotip, corak kerentanan antibiotik dan gen virulen tidak banyak didapati. Oleh itu kajian ini bertujuan untuk menentukan taburan serotip, corak kerentanan antibiotik dan profil gen virulen di kalangan isolat GBS di Malaysia. Seratus tiga isolat GBS telah dikumpulkan dari sampel klinikal di Universiti Kebangsaan Malaysia dari Jun 2010 sehingga...
Oktober 2011, yang terdiri daripada 22 isolat invasif, 23 isolat tidak invasif dan 58 isolat colonizing. Penentuan serotip kapsular dilakukan dengan kaedah gumpalan lateks yang menggunakan antisera khusus terhadap antigen jenis Ia, CPS II-VII. Pengesahan jenis kapsular dilakukan secara kaedah molekul (PCR) bagi semua jenis strain termasuk isolat yang telah tidak dapat ditentukan melalui kaedah lateks. Keputusan penentuan serotip yang dilakukan secara konvensional lateks (CS) dan molekular (MS) menunjukkan persamaan. Dua puluh (19.4%) isolat yang tidak dapat ditentukan secara CS telah dapat ditentukan melalui kaedas MS. Serotip VI (22.3%) dan VII (21.3%) adalah serotip yang paling banyak dan serotip IV (1%) yang paling kurang dijumpai. Ujian kerentanan antibiotik menunjukkan semua isolat adalah rentan kepada penisilin melalui kaedah penyerapan disk dan E-test. Tiada bakteria yang rintang terhadap cefuroxime, ceftriaxone, levofoxacin dan vancomysin dijumpai, sementara bakteria rintang terhadap erythromycin, clindamycin dan tetracycline adalah masing-masing sebanyak 23.3%, 16.5% dan 71.8%. Pengesanan tujuh gen virulen (cylE, lmb, scpB, hylB, rib, bca, bac) melalui kaedah PCR menunjukkan kehadiran gen cylE, lmb, scpB dan hylB pada semua isolat sementara gene rib, bca dan bac masing-masing dikesan pada 29.1%, 14.6% dan 9.7% isolat. Kajian ini adalah yang pertama melaporkan pengesanan virulen gen di dalam isolat GBS di Malaysia. Perkaitan yang signifikan telah ditemui antara gen rib dan serotip Ia, II, III dan VI; gen bca dan serotip II dan III. Secara kesimpulan, kajian ini menunjukkan serotip VI dan VII adalah serotip paling dominan di Malaysia dan boleh digunakan dalam penghasilan vaksin GBS. Ujian kerentanan antibiotik menunjukkan GBS di Malaysia masih rentan kepada penisilin dan boleh digunakan sebagai kaedah rawatan pertama. Hubungan yang signifikan di antara faktor virulen dan serotip tertentu perlu dipantau secara rutin untuk mengurangkan kes jangkitan GBS yang menyebabkan kematian.
ACKNOWLEDGEMENTS

Firstly, I would like to express my gratitude to the creator of the universe for his blessing and the opportunity that has been given to me to learn and gain precious experience during this study.

I also would like to express my deepest appreciation to my supervisor, Dr. Syafinaz Amin Nordin for her guidance and support as well as time spent in discussion throughout this research and thesis writing. I would like to express my sincere appreciation to Associate Professor Dr. Vasantha Kumari Neela and for her valuable advice, discussion, comments and assistance in this study.

I am grateful to the members and students of the Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, University Putra Malaysia for their assistance as well as the staff members of Medical Microbiology and Immunology laboratory, Universiti Kebangsaan Malaysia Medical Center for their support and guidance in helping me to collect clinical samples.

Thanks also to the authority of Universiti Putra Malaysia for providing fund (04-04-10-1002RU/F1) to conduct the present research.
I certify that a Thesis Examination Committee has met on 7 January 2014 to conduct the final examination of Narges Eskandarian on her thesis entitled "Distribution of Serotypes and Virulence Genes among Invasive, Non-Invasive, and Colonizing Streptococcus agalactiae (Group B Streptococcus) Isolates from Patients in A Major Teaching Hospital in Malaysia" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Malina binti Osman, PhD
Senior Lecturer
Faculty of Medicine and Health Science
Universiti Putra Malaysia
(Chairman)

Zamberi bin Sekawi, PhD
Professor
Faculty of Medicine and Health Science
Universiti Putra Malaysia
(Internal Examiner)

Latifah binti Saiful Yazan, PhD
Associate Professor
Faculty of Medicine and Health Science
Universiti Putra Malaysia
(Internal Examiner)

Parasakthi Navaratnam, PhD
Senior Lecturer
Monash University Sunway Campus
Malaysia
(External Examiner)

NORITAH OMAR, PhD
Associate Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 10 March 2014
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Syafinaz Amin Nordin, MBChB, MPath
Senior Lecturer
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Vasantha Kumari Neela, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

Zalina Ismail, MBBCh, BAO, MPath
Senior Medical Lecturer
Faculty of Medicine
Universiti Kebangsaan Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

Declaration by graduate student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: _______________________ Date: __________________

Name and Matric No.: ___
Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: ____________________ Signature: ________________
Name of Chairman of Supervisory Committee
Name of Member of Supervisory Committee
Name of Member of Supervisory Committee
Name of Member of Supervisory Committee

Signature: ____________________
Name of Chairman of Supervisory Committee
Name of Member of Supervisory Committee
Name of Member of Supervisory Committee
Name of Member of Supervisory Committee

xi
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>ABSTRACT</th>
<th>iii</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vii</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>viii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xviii</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

1.1 General Objective 3
1.2 Specific Objectives 3

2 LITERATURE REVIEW

2.1 Bacteriology of GBS 4
2.2 History of GBS 6
2.3 Epidemiology of GBS 6
 2.3.1 Colonization 6
 2.3.2 Risk Factor 7
2.4 Infection in Neonates 7
 2.4.1 Early-Onset Disease 7
 2.4.2 Late-Onset Disease 9
2.5 Infection in Pregnant Adults 9
2.6 Infection in Non-Pregnant Adults 9
2.7 Treatment of GBS 10
 2.7.1 Antibiotic Susceptibility 10
2.8 Vaccine Development 11
2.9 Pathogenesis of Virulence Factors 12
 2.9.1 Polysaccharide Capsule 12
 2.9.2 β-Hemolysin/Cytolysin 13
 2.9.3 C5a Peptidase (ScpB) 14
 2.9.4 Laminin Binding Protein (Lmb) 15
 2.9.5 Fibrinogen Binding Protein 15
 i) FbsA 15
 ii) FbsB 16
 2.9.6 C-Antigen 16
 i) α-C-Protein 17
 ii) β-C-Protein 17
2.9.7 Rib Protein 17
2.9.8 Hyaluronate lyase 18
2.9.9 Cell-Surface-Associated Protein (CspA) 19
2.9.10 Christie Atkins Munch-Petersen (CAMP Factor) 19
2.10 Laboratory Detection of GBS 19
2.11 Capsular Typing Techniques 20
2.12 Genotyping of GBS 20

3 MATERIALS AND METHODS 21
3.1 Clinical Isolates 21
3.2 Demographic Data 22
3.3 Ethical Issue and Consent 23
3.4 Confirmation of the Isolates 23
 3.4.1 Phenotypic Confirmation 23
 3.4.1.1 Gram Stain 23
 3.4.1.2 Catalase Test 24
 3.4.1.3 CAMP Test 24
 3.4.1.4 Slide Agglutination Technique 25
 3.4.2 Genotypic Confirmation of Isolates by cfb Gene Based PCR 25
 3.4.2.1 DNA Extraction 25
 3.4.2.2 Determination of DNA Quantity and Quality 26
 i) Gel Electrophoresis 26
 ii) Spectrophotometry 26
 a) Concentration of DNA 26
 b) DNA Quality 26
 3.4.2.3 PCR Condition 27
 3.4.2.4 Agarose Gel Electrophoresis of PCR Products 27
 3.4.2.5 Purification of PCR Products 28
 3.4.2.6 Sequencing of PCR Products 28
3.5 Study 1: To Determine the Distribution of S. agalactiae Serotypes among Invasive, Non-invasive and Colonizing Strains 28
 3.5.1 Conventional Capsular Typing of S. agalactiae Using Slide Agglutination Test 28
 3.5.2 Molecular Capsular Typing of S. agalactiae Using PCR 30
3.6 Study 2: To Determine the Antimicrobial Susceptibility Patterns of Invasive, Non-invasive and Colonizing Strains 32
 3.6.1 Antibiotic Susceptibility Test (AST) 32
 3.6.2 Penicillin Susceptibility Testing Using Etest® for S. agalactiae 33
3.7 Study 3: To Study the Virulence in the Invasive, Non-invasive and Colonizing Strains of S. agalactiae in Human 34
3.8 Statistical Analysis 37

4 RESULTS 38
4.1 Clinical Isolates 38
 4.1.1 Distribution of S. agalactiae by Sample Type 38
4.2 Demographic and Clinical Characterization 39
4.2.1 Neonate 39
4.2.2 Pregnant Adults 41
4.2.3 Non-Pregnant Adults 43
4.2.4 Other Organisms Isolated with GBS 46
4.3 Confirmation of the Isolates as S. agalactiae 47
4.3.1 Phenotypic Confirmation 47
4.3.2 Genotypic Confirmation of Isolates by cfb Gene PCR 51
4.4 Study 1: To Determine the Distribution of S. agalactiae 53
S. agalactiae Serotypes among Invasive, Non-invasive and Colonizing Strains
4.4.1 Conventional Capsular Typing of S. agalactiae Using 53
Slide Agglutination Test
4.4.2 Molecular Capsular Typing of S. agalactiae Using PCR 55
Assay
4.5 Study 2: To Determine the Antimicrobial Susceptibility 58
Patterns of Invasive, Non-invasive and Colonizing Strains
4.5.1 Antibiotic Susceptibility Test (AST) 58
4.5.2 Penicillin Susceptibility Testing Using Etest® for 63
S. agalactiae
4.6 Study 3: To Study the Virulence Pattern in the Invasive, Non-
invasive and Colonizing Strains of S. agalactiae in Human 65
4.7 Statistical Analysis 81
4.7.1 Association of Genotypic Traits with Molecular 81
Serotyping
4.7.1.1 Association of rib Gene and Serotype 81
4.7.1.2 Association of bca Gene and Serotype 81
4.7.1.3 Association of bac Gene and Serotype 81
4.7.2 Association of Virulence Genes and Isolate Types 82

5 DISCUSSION 84

6 SUMMARY, CONCLUSION AND RECOMENDATIONS FOR 92
FUTURE RESEARCH

REFERENCES 94
APPENDICES 108
BIODATA OF STUDENT 140
PUBLICATIONS AND CONFERENCES 141

xiv