UNIVERSITI PUTRA MALAYSIA

OPTIMIZATION OF PROTEIN EXTRACTION PROTOCOLS FOR THE IDENTIFICATION OF ABUNDANTLY EXPRESSED PROTEINS IN THE FRUIT, ROOT AND LEAF OF CURCULIGO LATIFOLIA

ELHAM RASTEGARI

FPSK(m) 2012 40
OPTIMIZATION OF PROTEIN EXTRACTION PROTOCOLS FOR THE IDENTIFICATION OF ABUNDANTLY EXPRESSED PROTEINS IN THE FRUIT, ROOT AND LEAF OF CURCULIGO LATIFOLIA

By

ELHAM RASTEGARI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia in Fulfillment of the Requirement for the Degree of Master of Science

February 2012
Dedicated to:

My Father and Mother,

Mr. Mahmoud Rastegari

Madam Fatemeh Pazhoumand

My Beloved sister,

Mandana

Whoever has provided me with care and compassion throughout my life
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Master of Science

OPTIMIZATION OF PROTEIN EXTRACTION PROTOCOLS FOR THE IDENTIFICATION OF ABUNDANTLY EXpressed PROTEINS IN THE FRUIT, ROOT AND LEAF OF CURCULIGO LATIFOLIA

By

ELHAM RASTEGARI

February 2012

Chair: Zalinah Ahmad, PhD

Faculty: Medicine and Health Sciences

Substantial achievements in proteomic techniques in the last decade have led to an increase in the application of proteomics to many fields, including plant sciences. Proteomics is a robust technology for the high-throughput investigation of proteins on a genome-wide scale. With the completion of genome sequencing projects and the improvement of analytical methods for protein identification, proteomics has now become a major tool for studying functional genomics. Despite the progress in proteomics research in animals, yeast and Escherichia coli, plant proteomics is still at infancy stages. Lemba, Curculigo latifolia, is an indigenous plant of Malaysia and is found mainly in swampy areas of tropical Asia and Australia. To date, there are no published reports of the proteome of this plant. This study focused on finding the best protein extraction protocols for specific tissues from this plant as
judged by the optimal 2-DE patterns. This was an essential step that had to be performed before the identification of abundantly expressed proteins from the fruit, root and leaf could be attempted. Fruit, root and leaf tissues of *Curculigo latifolia* were individually subjected to 7 different published protocols (three different phenol based protocols, a TCA-acetone based protocol, a combination of phenol and TCA-acetone-based protocol, and a chloroform-based protocol) to determine the most efficient method for the specific tissue. Prior to the protein extraction of fruit, a novel pectolytic enzyme mix pretreatment was tested and was found to successfully reduce the amount of pectin which otherwise made protein extraction from that tissue nearly impossible. Chloroform, phenol and TCA-acetone-based protocols were found to be the most efficient methods for fruit, root and leaf respectively. The five most abundant spots for each tissue were excised from 2-DE gels and analyzed by MALDI-TOF/TOF mass spectrometry, and identified by cross species comparisons employing available plant protein databases. Glutelin and RuBisCo were the most abundant proteins in the fruit and leaf respectively. In root, catalase and glyceraldehyde-3-phosphate were found to be the most abundant proteins.

Keywords: *Curculigo latifolia*, fruit, root, leaf, protein extraction, 2-D electrophoresis
PENGOPTIMUMAN PROTOKOL PENGEKSTRAKAN UNTUK PENENTUAN PROTEIN YANG BAHYAK
DI EKSPRESKAH DATU AKAR, BUAH, DAN DAUN CURCULIGO LATIFOLIA

Oleh

ELHAM RASTEGARI

Februari 2012

Pengerusi: Zalinah Ahmad, PhD
Fakulti: Fakulti Perubatan dan Sains Kesihatan

Pelbagai pencapaian dalam teknik proteomik beberapa dekad lepas telah mendorong kepada peningkatan dalam aplikasi proteomik dalam banyak bidang, termasuk sains tumbuhan. Proteomik adalah teknologi mantap yang berupaya melakukan pengenalpastian protein dalam jumlah yang tinggi pada skala genom. Dengan lengkapnya projek rangkaian genom dan penambahbaikan kaedah analitikal untuk pengenalpastian protein, proteomik akan menjadi alat utama untuk mengkaji fungsi genomik. Walaupun terdapat banyak perkembangan dalam kajian proteomik pada binatang, yis dan Escherichia coli, proteomik tumbuhan masih berada pada peringkat awal. Lemba, Curculigo latifolia, adalah tumbuhan asli Malaysia dan boleh ditemui juga di kawasan berpaya Australia dan Asia tropika. Sehingga kini, belum terdapat laporan...
ACKNOWLEDGEMENTS

I deeply appreciate all the wonderful people who have contributed significantly throughout the whole course of my study. I am also indebted to all of them for their help and support.

First and foremost, I would like to sincerely acknowledge my supervisors: Dr. Zalinah Ahmad, Dr. David F. Spencer and Prof. Dr. Maznah Ismail, for their valuable guidance, suggestion, helpful advice and never-ending patience throughout my studies. Also for the critical review in the completion of this thesis. I am grateful to all the colleagues and staff in the Molecular Biomedicine Laboratory, Institute of Bioscience, Kak siti, Noursha, Khadijah, Mina, Mehdi, Sima, Masoud, Nazila, for their help during the commencement of my experiment and making my time in the laboratory as enjoyable and pleasant.

I would like to express my sincere gratefulness to my dear Mommy, Daddy and Mandana, which without their endless love, moral support and encouragement, I would have never been able to complete this important step of my life. Last but not least, I would like to deliver a bouquet of thanks to my best friend Masoud for his endless support and kindness.

Without all of you, it would not be possible for me to complete my project and thesis. I wish God bless you all.
I certify that a Thesis Examination Committee has met on 17th of February 2012 to conduct the final examination of Elham Rastegari on her thesis entitled "Optimization of Protein Extraction Protocols for the Identification of Abundantly Expressed Proteins in the Fruit, Root and Leaf of Curculigo latifolia" in accordance with the Universities and university Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Member of Thesis Examination Committee were as follows:

Rasedee Abdullah, PhD
Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Chairman)

Muhajir Hamid, PhD
Associate Professor
Faculty of Biotechnology and. Bimolecular Sciences
Universiti Putra Malaysia
(Internal Examiner)

Datin Dr.FRONT Fakuraz, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Internal Examiner)

Nor Aripin Faculty of Medicine and Health Science

BUJANG KIM HUAT, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Zalinah Ahamad, PhD
Senior Lecturer
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Maznah Ismail, PhD
Professor
Institute of Bioscience
Universiti Putra Malaysia
(Member)

David Farringdon Spencer, PhD
Researcher
Faculty of Science and Biotechnology
Dalhousie University
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I certify that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not currently submitted for any of other degree at University Putra Malaysia or at any other institutions.

ELHAM RASTEGARI
Date: 17 February 2012
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>II</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>V</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>VII</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>VII</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>IX</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>XIV</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>XV</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>XIX</td>
</tr>
</tbody>
</table>

CHAPTER

1. **INTRODUCTION** 1

2. **LITERATURE REVIEW** 5
 2.1 Proteome 5
 2.2 The Correlation between Genomics and Proteomics 6
 2.3 The Advantages of Proteomics over Genomics 7
 2.4 Proteomics Applications 7
 2.5 Plant Proteomics 9
 2.6 Challenges in Plant Proteomics 10
 2.7 Lemba, *Curculigo latifolia* 12
 2.8 Plant Sample Preparation 13
 2.9 Plant Protein Extraction 16
 2.10 The Scientific Basis of Seven Extraction Protocols used in this study 17
 2.10.1 TCA-acetone Based Protocol 17
 2.10.2 TCA-acetone / Hot-SDS Based Protocol 18
 2.10.3 Phenol Based Protocol 19
 2.10.4 A Combination of TCA-acetone/ Phenol Based Protocol 21
 2.10.5 Chloroform Based Protocol 22
 2.11 Commonly Used Proteomic Techniques for Protein Analyses 23
 2.11.1 Two Dimensional Gel Electrophoresis (2-DE) 23
 2.11.2 Mass Spectrometry 25
 2.12 Bioinformatics 26
3 MATERIAL AND METHODS

3.1 Materials
3.1.1 Plant material 29
3.1.2 Chemicals and Reagents 30
3.1.3 Apparatus 31

3.2 Methods
3.2.1 Evaluating the Effectiveness of Protease Inhibitors (PMSF and Iodoacetamide) Used in Sample Preparation of Fruit, Root and Leaf 31
3.2.2 Pectolytic Enzyme Mix Optimization for the Pretreatment of Fruit Powder 32
3.2.3 Modified Protocols for Total Protein Extraction 32
3.2.4 Protein Solubilization 39
3.2.5 Protein Quantification 39
3.2.6 Protein Separation 41
3.2.7 Gel Staining 48
3.2.8 Gel Imaging and Data Analysis 48
3.2.9 Tandem Mass Spectrometry 49

4 RESULTS AND DISCUSSION

4.1 The Importance of Freeze-Drying for Sample Preparation 51
4.2 Evaluating the Effectiveness of PMSF and Iodoacetamide for Protease Inhibition in Fruit, Root and Leaf 52
4.3 The Comparison of Protein Yields Extracted by Using Different protocols
4.3.1 Fruit 55
4.3.2 Root 56
4.3.3 Leaf 58

4.4 Analyzing 1-DE and 2-DE Profiles
4.4.1 Fruit 60
4.4.2 Root 69
4.4.3 Leaf 73

4.5 Comparing the Yields and 2-DE Profiles of proteins from Curculigo latifolia Fruit, Root and Leaf with Various Fruit, Root and Leaf Proteins Extracted by Similar Protocols 80
4.6 Identification of Abundantly Expressed Proteins of Fruit, Root and Leaf
4.6.1 Leaf 86
4.6.2 Fruit 89
4.6.3 Root 91
5 CONCLUSION AND RECOMMENDATIONS

5.1 CONCLUSION 93
5.2 RECOMMENDATION 94

BIBLIOGRAPHY 96
APPENDICES 104
BIODATA OF STUDENT 121
LIST OF PUBLICATIONS 122