ROLE, INVOLVEMENT AND POTENTIAL OF INTERLEUKIN-27 AS AN IMMUNOTHERAPEUTIC TARGET IN MURINE MALARIA

SITI SARAH BINTI FAZALUL RAHIMAN

FPSK(m) 2012 37
ROLE, INVOLVEMENT AND POTENTIAL OF INTERLEUKIN-27 AS AN IMMUNOTHERAPEUTIC TARGET IN MURINE MALARIA

SITI SARAH BINTI FAZALUL RAHIMAN

MASTER OF SCIENCE
UNIVERSITI PUTRA MALAYSIA

2012
ROLE, INVOLVEMENT AND POTENTIAL OF INTERLEUKIN-27 AS AN IMMUNOTHERAPEUTIC TARGET IN MURINE MALARIA

By

SITI SARAH BINTI FAZALUL RAHIMAN

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Master of Science

August 2012
In the name of Allah, the most Compassionate and the Most Merciful.

To my beloved husband, thank you for your endless support.

To my supportive parents and parents-in-laws, brothers and sisters,
 thank you for your unconditional love.

To Prof Madya Dr Abas Hj Hussin, may Allah ease your burdens
 and each day is a little bit brighter.
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Master of Science

ROLE, INVOLVEMENT AND POTENTIAL OF INTERLEUKIN-27 AS AN IMMUNOTHERAPEUTIC TARGET IN MURINE MALARIA

By

SITI SARAH BINTI FAZALUL RAHIMAN

August 2012

Chair : Rusliza binti Basir, PhD
Faculty : Faculty of Medicine and Health Sciences

Interleukin-27 (IL-27) has been known to exert pleiotropic role in many inflammatory-related diseases including parasitic infection. However, its involvement during malaria infection has yet to be elucidated. In this study, the role and involvement of IL-27 during malaria infection was investigated and the effects of modulating its release on the course of the infection, the release of major inflammatory cytokines and the histopathological consequences in major affected organs during malaria were evaluated. *Plasmodium berghei* (*P. berghei*) ANKA infection in male ICR mice was used as a model for malaria infection. The mice were inoculated intraperitoneally with 2 x 10⁷ parasite-infected red blood cells (PRBCs) whereas the controls received an equivalent dilution of normal RBCs. The concentration of IL-27 in the plasma of malarial mice measured by means of ELISA, showed persistent elevation of IL-27 right from the early until the late phase of infection and its release is independent of the degree of disease severity. The modulation of IL-27 release was carried out by treatment of malarial mice with recombinant mouse IL-27 (rmIL-27), WSX-1Fc chimera or anti-WSX-1 monoclonal
antibody (WSX-1 mAb) intravenously. Inhibition of IL-27 with WSX-1 Fc chimera and WSX-1 antibodies delayed the appearance of physical signs of illness and parasitaemia development and also prolonged the survival of malaria-infected mice. Augmentation of IL-27 with rmIL-27 significantly elevated the release of anti-inflammatory cytokine (IL-10) whereas inhibition and neutralisation of IL-27 with WSX-1 Fc chimera and WSX-1 mAb respectively, showed decreased level of IL-10. A significant elevation of pro-inflammatory cytokines (IFN-\(\gamma\) and IL-6) was also observed, both during augmentation and inhibition of IL-27. From the pattern of cytokines release, it can be suggested that IL-27 exerts an anti-inflammatory activity in the T\(_h\)1 type response by signalling the production of IL-10 during malaria. Histopathological examination performed on internal organs including the brain, lungs, liver, spleen and kidneys of malarial mice showed significant sequestration of PRBCs in the microvasculature of all the major organs of malarial mice. Other significant histopathological changes were also observed in malarial mice such as hyperplasia and hypertrophy of the Kupffer cells in the liver, hyaline membrane formation in the lungs, enlargement of the white and red pulp element followed by the lost of structure of germinal centre in the spleen, and vacuolation of the kidney tubule cells. Treatment with rmIL-27 and WSX-1 Fc chimera failed to show any significant improvement on the histopathological conditions of the organs of malaria-infected mice. Overall, the results suggest that IL-27 is involved during malaria infection and it may play an important anti-inflammatory role during immune response against the disease. Modulation of its release produced a positive impact on inflammatory cytokine production during the infection, suggesting its potential as an immunotherapeutic target in malaria, in which the host may benefit from its inhibition.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk Ijazah Master Sains

PERANAN, PENGLIBATAN DAN POTENSI INTERLEUKIN-27 SEBAGAI SASARAN IMMUNOTERAPEUTIK DALAM MALARIA

Oleh

SITI SARAH BINTI FAZALUL RAHIMAN

Ogos 2012

Pengerusi : Rusliza binti Basir, PhD
Fakulti : Fakulti Perubatan dan Sains Kesihatan

Interleukin-27 (IL-27) telah diketahui mempunyai peranan pleiotropik dalam banyak penyakit berkaitan inflamasi termasuk jangkitan parasit. Walau bagaimanapun, penglibatannya semasa jangkitan malaria masih belum diperjelaskan. Dalam kajian ini, peranan dan penglibatan IL-27 dalam jangkitan malaria telah diselidiki dan kesan modulasi penghasilannya ke atas keadaan keseluruhan jangkitan malaria, pembebasan sitokin inflamasi utama dan perubahan histopatologi organ-organ utama yang terjejas semasa jangkitan malaria telah dinilai. Jangkitan Plasmodium berghei (P. berghei) ANKA dalam mencit ICR jantan telah digunakan sebagai model jangkitan malaria. Mencit disuntik secara intraperitoneal dengan 2 x 10^7 sel darah merah berparasit. Kepekatan IL-27 dalam plasma mencit yang dijangkiti malaria yang diukur melalui kaedah ELISA, menunjukkan peningkatan berterusan IL-27 bermula dari awal hingga ke akhir fasa jangkitan dan pembebasannya didapati tidak bergantung kepada tahap ketenatan jangkitan. Modulasi ke atas pembebasan IL-27 dijalankan dengan merawat mencit yang dijangkiti malaria dengan rekombinan mencit IL-27 (rmIL-27), WSX-1Fc chimera dan antibodi monoklonal anti-WSX-1
secara intravena ke atas mencit yang dijangkiti malaria. Perencatan pembebasan IL-27 oleh WSX-1 Fc chimera dan antibodi WSX-1 memperlahankan kemunculan tanda-tanda fizikal jangkitan dan perkembangan parasitemia seterusnya melanjutkan tempoh hayat mencit yang dijangkiti malaria. Penambahan IL-27 dengan rmIL-27 meningkatkan pembebasan sitokin anti-inflamasi (IL-10) secara signifikan manakala perencatan dan peneutralan IL-27 masing-masing dengan WSX-1 Fc chimera dan antibodi WSX-1, menunjukkan penurunan tahap IL-10. Peningkatan signifikan sitokin proinflamiasi (IFN-γ dan IL-6) juga diperhatikan semasa penambahan dan perencatan IL-27. Daripada corak pembebasan sitokin-sitokin, boleh disimpulkan bahawa IL-27 menunjukkan aktiviti anti-inflamasi dalam gerakbalas jenis Th1 dengan mengisyaratkan penghasilan IL-10 semasa malaria. Pemeriksaan histopatologi yang dilakukan ke atas organ-organ dalam termasuk otak, paru-paru, hati, limpa dan ginjal menunjukkan sekuestrasi sel-sel darah merah berparasit dalam mikrovaskulatur kesemua organ-organ utama mencit yang dijangkiti malaria. Perubahan histopatologi lain yang signifikan juga diperhatikan dalam mencit yang dijangkiti malaria termasuk hiperplasia dan hipertrofi sel-sel Kupffer dalam hati, pembentukan membran hyalin dalam paru-paru, pembesaran elemen pulpa merah dan putih diikuti dengan kehilangan struktur pusat germinal dalam limpa, dan vakuolasi sel-sel tubul ginjal. Rawatan dengan rmIL-27 dan WSX-1 Fc chimera gagal menunjukkan sebarang kesan pembaikan yang signifikan ke atas keadaan histopatologi organ-organ mencit yang dijangkiti malaria. Secara keseluruhannya, keputusan kajian mencadangkan penglibatan IL-27 semasa jangkitan malaria dan ianya mungkin memainkan peranan antiinflamasi yang penting semasa gerakbalas imun melawan jangkitan malaria. Modulasi pembebasannya menghasilkan impak yang positif ke atas pembebasan sitokin inflamasi semasa jangkitan, dan ini
mencadangkan potensinya sebagai sasaran imunoterapeutik di mana hos boleh memperolehi manfaat dari perencatannya.
ACKNOWLEDGEMENTS

I would like to express my deepest gratitude and sincerest appreciation to my supervisor Dr. Rusliza Basir for her outstanding supervision and support for this research. Special thanks to my co-supervisors, Dr Herni Talib and Dr Norshariza Nordin for excellently guiding me through with their expertise. This research would not have been successful without their valuable guidance, enthusiastic help as well as constructive criticisms throughout the research.

I would like to express my sincere thanks to Hazirah Azman who provided me with an endless support for this project and my laboratory colleagues for their assistance during my laboratory work. Not forgetting, many thanks to the laboratory staffs for guiding me through all the technical difficulties during the project. They helped me out far more than they ever realised, their supports are very much appreciated.

I would like to express my heartiest and sincerest appreciation to my husband and my daughter for their endless support and encouragement throughout the research period. Special thanks to my beloved parents and family members who had backed, inspired and paved me to succeed in my project.

Finally, thank you to Universiti Sains Malaysia and Ministry of Higher Education for providing me the scholarships. Thank you as well to Universiti Putra Malaysia for funding this project under Research University Grant Scheme (RUGS).
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Rusliza binti Basir, PhD
Senior Lecturer
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Norshariza binti Nordin, PhD
Senior Lecturer
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

Herni binti Talib, PhD
Senior Medical Lecturer
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

SITI SARAH BINTI FAZALUL RAHIMAN

Date: 7 August 2012
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>viii</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>ix</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xx</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxi</td>
</tr>
<tr>
<td>CHAPTER</td>
<td></td>
</tr>
<tr>
<td>1 INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2 LITERATURE REVIEW</td>
<td>8</td>
</tr>
<tr>
<td>2.1 Human malarial parasites</td>
<td>8</td>
</tr>
<tr>
<td>2.2 Life cycle of Plasmodium</td>
<td>10</td>
</tr>
<tr>
<td>2.3 Animal models of malaria infection</td>
<td>13</td>
</tr>
<tr>
<td>2.4 Clinico-pathology of malaria</td>
<td>15</td>
</tr>
<tr>
<td>2.4.1 Fever</td>
<td>15</td>
</tr>
<tr>
<td>2.4.2 Anaemia</td>
<td>16</td>
</tr>
<tr>
<td>2.4.3 Cerebral malaria (CM)</td>
<td>18</td>
</tr>
<tr>
<td>2.4.4 Metabolic acidosis</td>
<td>20</td>
</tr>
<tr>
<td>2.4.5 Splenomegaly</td>
<td>20</td>
</tr>
<tr>
<td>2.4.6 Hepatomegaly</td>
<td>21</td>
</tr>
<tr>
<td>2.4.7 Pulmonary oedema</td>
<td>22</td>
</tr>
<tr>
<td>2.4.8 Renal damage</td>
<td>23</td>
</tr>
<tr>
<td>2.5 Immune response in malaria</td>
<td>24</td>
</tr>
<tr>
<td>2.5.1 Innate immunity</td>
<td>24</td>
</tr>
<tr>
<td>2.5.2 Adaptive immunity</td>
<td>26</td>
</tr>
<tr>
<td>2.5.3 T_h1 and T_h2 responses during malaria</td>
<td>28</td>
</tr>
<tr>
<td>2.6 Pro-inflammatory cytokines in malaria</td>
<td>30</td>
</tr>
<tr>
<td>2.6.1 Tumor necrosis factor alpha (TNF-α)</td>
<td>30</td>
</tr>
<tr>
<td>2.6.2 Interferon-gamma (IFN-γ)</td>
<td>31</td>
</tr>
<tr>
<td>2.6.3 Interleukin-12 (IL-12)</td>
<td>32</td>
</tr>
<tr>
<td>2.6.4 Interleukin-18 (IL-18)</td>
<td>33</td>
</tr>
<tr>
<td>2.6.5 Interleukin-1 (IL-1)</td>
<td>33</td>
</tr>
<tr>
<td>2.6.6 Interleukin-6 (IL-6)</td>
<td>34</td>
</tr>
<tr>
<td>2.6.7 Interleukin-15 (IL-15)</td>
<td>35</td>
</tr>
<tr>
<td>2.7 Anti-inflammatory cytokines in malaria</td>
<td>36</td>
</tr>
<tr>
<td>2.7.1 Interleukin-4 (IL-4)</td>
<td>36</td>
</tr>
<tr>
<td>2.7.2 Interleukin-10 (IL-10)</td>
<td>36</td>
</tr>
<tr>
<td>2.7.3 Transforming growth factor beta (TGF-β)</td>
<td>38</td>
</tr>
<tr>
<td>2.7.4 Granulocyte-macrophage colony-stimulating factor (GM-CSF)</td>
<td>39</td>
</tr>
<tr>
<td>2.7.5 Interleukin-21 (IL-21)</td>
<td>41</td>
</tr>
<tr>
<td>2.7.6 Interleukin-13 (IL-13)</td>
<td>41</td>
</tr>
</tbody>
</table>
2.8 Interleukin-27 (IL-27) 42
2.9 IL-27 receptor (IL-27R) 43
2.10 IL-27 signalling 44
2.11 IL-27 and pro-inflammatory responses 45
2.12 IL-27 and anti-inflammatory responses 47
2.13 Potential therapies of IL-27 48
2.14 Histopathological changes during malaria 52
 2.14.1 Brain 52
 2.14.2 Liver 53
 2.14.3 Spleen 54
 2.14.4 Kidneys 55
 2.14.5 Lungs 55

3 MATERIALS AND METHODOLOGY 56
3.1 Animals 56
3.2 Measurement of body weight and body temperature 56
3.3 Murine malaria parasite 56
3.4 Induction and maintenance of malaria 57
3.5 Parasitaemia measurement 57
3.6 Plasma preparation 58
3.7 Preparation of stock solutions and buffers 59
 3.7.1 Alsever’s buffer solution 59
 3.7.2 Sodium chloride (NaCl) 0.85% solution 59
 3.7.3 Phosphate buffer saline (PBS) solution 59
 3.7.4 Block buffer solution 59
 3.7.5 Tris-buffered saline (TBS) solution 60
 3.7.6 0.05% Tween 20 in TBS solution 60
 3.7.7 Wash buffer solution 60
 3.7.8 Reagent diluent solution 60
 3.7.9 Mouse IL-27 standard solution 60
 3.7.10 Mouse IL-27 kit control solution 61
 3.7.11 IFN-γ capture antibody solution 61
 3.7.12 IFN-γ detection antibody solution 61
 3.7.13 IFN-γ standard solution 62
 3.7.14 IL-6 capture antibody solution 62
 3.7.15 IL-6 detection antibody solution 62
 3.7.16 IL-6 standard solution 63
 3.7.17 IL-10 capture antibody solution 63
 3.7.18 IL-10 detection antibody solution 63
 3.7.19 IL-10 standard solution 64
 3.7.20 Streptavidin-horseradish peroxidase (HRP) solution 64
3.8 Preparation of Leishman’s stain (0.02% w/v) 64
3.9 Preparation of chemicals and reagents for histopathological study
 3.9.1 Formalin 10% solution 65
 3.9.2 Ethanol 95% solution 65
 3.9.3 Ethanol 80% solution 65
 3.9.4 Ethanol 70% solution 65
 3.9.5 Acid alcohol 1% solution 65
3.9.6 Weak ammonia 3% solution 66
3.10 Preparation of drugs 66
 3.10.1 Recombinant mouse IL-27 (rmIL-27) 66
 3.10.2 Recombinant mouse WSX-1 Fc chimera (WSX-1 Fc chimera) 66
 3.10.3 Monoclonal anti-mouse WSX-1 antibody (WSX-1 mAb) 66
3.11 Cytokine assays 67
 3.11.1 IL-27 ELISA 67
 3.11.2 IFN-γ ELISA 68
 3.11.3 IL-6 ELISA 70
 3.11.4 IL-10 ELISA 71
3.12 Experimental procedures 74
 3.12.1 Malaria model establishment 74
 3.12.2 Post-mortem examination on internal organs in the control and malaria-infected mice 75
 3.12.3 Determination of IL-27 systemic concentrations in control and malaria-infected mice 75
 3.12.4 The effects of treatment with rmIL-27, WSX-1 Fc chimera and WSX-1 mAb on the course of malaria infection 76
 3.12.5 The effects of treatment with rmIL-27, WSX-1 Fc chimera and WSX-1 mAb on pro- and anti-inflammatory cytokines systematic release 77
 3.12.6 The effects of treatment with rmIL-27 and WSX-1 Fc chimera on the histopathological changes of malaria 78
3.13 Statistical analysis 81
4 RESULTS AND DISCUSSION 82
 4.1 Establishment of malaria model 82
 4.1.1 Visual observation on the physical signs of illness 82
 4.1.2 Post-mortem examinations on the internal organs of control and malaria-infected mice 84
 4.1.3 Effect of malaria on body weight 86
 4.1.4 Effect of malaria on body temperature 88
 4.1.5 Parasitaemia levels of malarial mice 90
 4.1.6 Percentage of red blood cells (RBCs) in malarial mice 91
 4.1.7 Survival of malarial mice 94
 4.2 IL-27 involvement during malaria 96
 4.2.1 IL-27 release during malaria infection 96
 4.2.2 Correlation of IL-27 release and parasitaemia development 96
 4.3 The effects of modulating IL-27 release on morbi-mortality during murine malaria 100
4.3.1 The effects of modulating IL-27 release on physical signs of illness of malaria-infected mice

4.3.2 The effects of modulating IL-27 release on parasitaemia level during murine malaria

4.3.3 The effects of modulating IL-27 release on the survival of malaria-infected mice

4.4 The effects of modulating IL-27 release on pro- and anti-inflammatory cytokines during rodent malaria

4.5 The effects of modulating IL-27 release on histopathological changes of internal organs during murine malaria

5 SUMMARY, CONCLUSION AND RECOMMENDATION FOR FUTURE RESEARCH

5.1 Research summary

5.2 Limitations and recommendations

5.3 Conclusion