Kluyveromyces marxianus FROM FERMENTED RICE AND IRANIAN WINE AS MICROBIAL FEED ADDITIVE FOR RUMINANTS

SEYED EEMAN NOORAE

ITA 2013 7
Kluyveromyces marxianus FROM FERMENTED RICE AND IRANIAN WINE
AS MICROBIAL FEED ADDITIVE FOR RUMINANTS

By

SEYED EEMAN NOORAEE

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia,
in fulfillment of the Requirements for the Degree of Doctor of Philosophy

June 2013
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs, and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright’ Universiti Putra Malaysia
DEDICATION

Dedicated to my family, who inspired my love for learning
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Doctor of Philosophy.

Kluyveromyces marxianus FROM FERMENTED RICE AND IRANIAN WINE AS MICROBIAL FEED ADDITIVE FOR RUMINANTS

By

SEYED EEMAN NOORAEE

June 2013

Chair: Professor Abdul Razak Alimon, PhD

Institute: Institute of Tropical Agriculture

Feeding to manipulate rumen microbial ecosystem and to enhance overall rumen fermentation in order to improve production efficiency of ruminant animals is a main concern for animal nutritionists and rumen microbiologists. Microbial feed additive would be a possible solution.

A series of experiments was conducted to isolate and characterize a suitable yeast from traditional fermented rice (Tapai) and home-made wine as a microbial feed additive for ruminants.

Yeast isolates were selected based on their tolerance to volatile fatty acids (VFA) mixture of acetic, propionic and butyric acids and to pH and temperature according to the rumen condition. The ability to grow and produce ethanol was determined in yeast extract peptone glucose broth supplemented with a VFA mixture. Fifty-five
isolates showed optical density, OD$_{660nm}$, values between 0.35-0.60 and 27 isolates showed ethanol production in the range of 0.17-0.30 (%v/v). All 27 isolates from Tapai and wine were identified as *Kluyveromyces marxianus* based on biochemical tests or molecular identification using the rDNA nontranscribed spacer 2 region. The best isolate, *Kluyveromyces marxianus* WJ1, in terms of ethanol production and co-utilization of different carbon source with D-xylose was selected for further evaluations.

In a 4×4 factorial experiment the effect of alfalfa hay and corn grain ratios (100:0; 70:30; 50:50 and 30:70, respectively) and optical density (OD) of *Kluyveromyces marxianus* WJ1 cell suspension (OD:0.0, OD: 0.1, OD: 0.2 and OD:0.3) as a microbial feed additive on *in vitro* gas production were examined. Gas production was affected by *K. marxianus* WJ1 (+11.7%; P<0.01) and substrate significantly (P<0.01). Interaction of *K. marxianus* WJ1 by substrate was significant (P<0.01). Di-phasic model was applied to explain the interaction between *K. marxianus* WJ1 and substrate.

In a completely randomized design, five plant materials, i.e. alfalfa (*Medicago sativa*), guinea grass (*Panicum maximum*), bermuda grass (*Cynodon dactylon*), rice straw (*Oryza sativa*) and timothy hay (*Phleum pretense*) were used to evaluate the effect of different *K. marxianus* WJ1 cells suspensions (OD: 0.0, OD: 0.1, OD: 0.2 and OD:0.3) on *in vitro* apparent dry matter digestibility. The *in vitro* apparent dry matter digestibility of alfalfa (55.0% vs 51.3%), guinea grass (61.0% vs 52.1%) and timothy hay (72.2% vs 62.1%) was improved significantly (P<0.01).

The effect of *K. marxianus* WJ1 on nutrient digestibility, ruminal fermentation and rumen microbial population in goats was evaluated. Treatments were: control (basal
diet), basal diet plus 1g freeze dried *K. marxianus* WJ1 and basal diet plus 5g freeze dried *K. marxianus* WJ1. Total volatile fatty acid production (92.2 mM vs 82.8 mM;
P<0.01) and acetic acid production (66.8% vs 63.8%;
P<0.05) were increased when
K. marxianus WJ1 (1g) and (5g) was included in basal diet respectively. Ruminal ammonia nitrogen and total protozoa count were reduced significantly (P<0.05) when experimental diet was supplemented by *K. marxianus* WJ1.

A production experiment was conducted to investigate the effect of *K. marxianus* WJ1 on nutrient digestibility and daily weight gain in goats. Treatments were: basal diet (control) and basal diet plus 1g freeze dried *K. marxianus* WJ1. Organic matter digestibility was increased significantly (P<0.05) compared with control. However, daily weight gain was not significantly affected by treatment.

It can be concluded that based on *in vitro* and *in vivo* studies, *K. marxianus* WJ1 could be considered as a potential microbial feed additive for ruminants.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

Kluveromyces marxianus DARIPADA BERAS DIPERAM DAN WAIN IRAN SEBAGAI BAHAN ADITIF MAKANAN MIKROB UNTUK RUMINAN

Oleh

SEYED EEMAN NOORAEE

Jun 2013

Pengerusi: Professor Abdul Razak Alimon, PhD

Institut: Institut Pertanian Tropika

Pemberian makanan untuk memanipulasi ekosistem mikrob rumen bagi meningkatkan penapaian rumen keseluruhan dan memaksimumkan kecekapan pengeluaran haiwan ruminan sering menjadi fokus kajian utama bagi ahli pemakanan haiwan dan mikrobiologi rumen. Bahan aditif makanan mikrob boleh menjadi salah satu penyelesaiannya.

Satu siri eksperimen telah dijalankan untuk mengasingkan ciri-ciri yang sesuai dari yis penapaian beras tradisional (Tapai) dan wain buatan sendiri sebagai bahan tambahan makanan mikrob untuk ruminan.

Isolat yis yang telah dipilih berdasarkan toleransi kepada campuran asid lemak meruap (VFA) asis asid asetik, propionik dan butyric, pH dan suhu mengikut keadaan rumen. Keupayaan untuk berkembang dan menghasilkan etanol telah
ditentukan dalam ekstrak yis pepton broth glukosa ditambah dengan campuran VFA. Lima puluh lima isolat telah menunjukkan ketumpatan optik, nilai OD$_{660nm}$, antara 0.35-0.60 dan 27 isolat menunjukkan pengeluaran etanol dalam julat 0.17-0.30 (%v/v). Kesemua 27 isolat dari tapai dan wain telah dikenal pasti sebagai Kluyveromyces marxianus berdasarkan ujian biokimia atau pengenalan molekul menggunakan rDNA spacer non-transcribed2 rantau. Isolat yang terbaik, Kluyveromyces marxianus WJ1, dari segi pengeluaran etanol dan penggunaan bersama sumber karbon yang berbeza dengan D-xylose telah dipilih untuk penilaian selanjutnya.

Dalam ujikaji 4 × 4 faktorial kesan nisbah hay alfalfa dan bijirin jagung (100:0; 70:30; 50:50 dan 30:70, masing-masing) dan ketumpatan optik suspensi (OD) Kluyveromyces marxianus WJ1 (OD: 0.0, OD: 0.1, OD: 0.2 dan OD: 0.3) sebagai bahan tambahan makanan mikrob ke atas pengeluaran gas in vitro telah diteliti. Pengeluaran gas telah meningkat dengan ketara disebabkan oleh K. marxianus WJ1 (+11.7%; P <0.01) dan substrat (P <0.01). Interaksi K. marxianus WJ1 dengan substrat adalah signifikan (P<0.01). Model Di-phasic telah digunakan untuk menerangkan interaksi antara K. marxianus WJ1 dan substrat.

Dalam ujikaji reka bentuk rawak, limabahan tumbuhan, iaitu alfalfa (Medicago sativa), rumput guinea (Panicum maximum), rumput bermuda (Cynodon dactylon), beras jerami (oryza sativa) dan timothy hay (Phleum pretense) telah digunakan untuk menilai kesan yang berbeza K. marxianus WJ1 suspensi sel (OD: 0.0, OD: 0.1, OD: 0.2 dan OD: 0.3) di dalam in vitro jelas perkara penghadaman kering. Dalam in vitro jelas penghadaman bahan kering alfalfa (55.0% vs 51.3%), rumput guinea (61.0% vs 52.1%) dan timothy hay (72.2% vs 62.1%) telah meningkat dengan ketara (P <0.01).
Kesan *K. marxianus* WJ1 pada pencernaan nutrien, penapaian rumen dan populasi mikrob rumen di kambing telah dinilai. Rawatanyang digunakan adalah; 1) kawalan (diet basal), 2) diet basal ditambah 1g pengeringan bekun *K. marxianus* WJ1 dan pemakanan basal ditambah 5g *K. marxianus* WJ1 dibeku kering. Jumlah menentu pengeluaran asid lemak (92.2 mM *vs* 82.8mM; *P* <0.01) dan pengeluaran asid asetik (66.8% *vs* 63.8%; *P* <0.05) telah meningkat apabila *K. marxianus* WJ1 (1g) dan (5g) telah dimasukkan ke dalam diet basal masing-masing. Kandungan nitrogen ammonia rumen dan kiraan jumlah protozoa telah menurun dengan ketara (*P* <0.05) apabila makanan eksperimen telah ditambah dengan *K. marxianus* WJ1.

Seterusnya, satu eksperimen pengeluaran telah dijalankan untuk mengkaji kesan *K.marxianus* WJ1 pada pencernaan nutrien dan peningkatan berat badan harian kambing. Rawatan yang digunakan adalah:diet basal (kawalan) dan diet basal ditambah 1g *K. marxianus* WJ1 dibeku kering. Pencernaan bahan organik telah meningkat dengan ketara (*P* <0.05) berbanding dengan kawalan. Walau bagaimanapun, peningkatan berat badan harian tidak terjejas oleh diet yang diberikan.

Kesimpulannya, berdasarkan kajian *in vitro* dan *in vivo*, *K. Marxianus* WJ1 boleh dianggap sebagai mikrob berpotensi untuk bahan aditif makanan untuk ruminan.
ACKNOWLEDGEMENTS

Firstly, I would like to express my utmost gratitude to my supervisor, Prof. Dr. Abdul Razak Alimon, the chairman of my supervisory committee, who gave me the independency to develop the research ideas and hypotheses and for his guidance, hospitality and supports throughout my study in Malaysia.

I would like to express my deepest gratitude to Prof. Dr. Norhani Abdullah and Prof. Dr. Ho Yin Wan, the members of my supervisory committee, for their endless support, invaluable guidance, and encouragement towards the completion of this study.

I would like to express my thanks to the Director and Deputy Director of Institute of Tropical Agriculture, Professor Dr. Sariah Meon, and Professor Dr. Mohamed Hanafi Musa, respectively, and all staff members of the Institute of Tropical Agriculture for their support during my study.

My thanks are also due to the then Head, Department of Animal Science, Associate Professor Dr. Halimatun Yaakub, and all staff members of Department of Animal Science, Faculty of Agriculture, and the staff of Graduate School of Universiti Putra Malaysia for their help towards the completion of the study.

Invaluable assistance from Mr. Khairul Kamar Bakri and Mrs. Haw Ah Kam from Laboratory of Industrial Biotechnology of Institute of Bioscience are highly appreciated.

I would like to acknowledge my dear colleagues and friends, Mohammad Mehdi Saberioon, Naghmeh Nejat, Ali Ganjloo, Arash Javanmard, Abdoreza Soleimani
Frajam, Norbaiyah Binti Bahayuddin, Mahdi Ebrahimi for their supports and companionship during my study.

Last, but not least, I would like express my deepest appreciation to my parents and my wife, Nazanin, whose love and devotion encouraged me to pursue my PhD. Undoubtedly, their supports and prayers will always be the pillars to success in my life.
I certify that a Thesis Examination Committee has met on 14 June 2013 to conduct the final examination of Seyed Eeman Noorae on his thesis entitled "Kluyveromyces marxianus from Fermented Rice and Iranian Wine as Microbial Feed Additive for Ruminants" in accordance with Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Examination Committee were as follows:

Jothi Malar a/p P.V. Panandam, PhD
Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

Halimatun binti Yaakub, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Internal Examiner)

Kamaruzaman bin Sijam, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Internal Examiner)

Egil Robert Orskov, PhD
Professor
Macaulay Research Institute
United Kingdom
(External Examiner)

NORITAH OMAR, PhD
Associate Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 2 August 2013
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of doctor of philosophy. The members of the Supervisory Committee were as follows:

Abdul Razak Alimon, PhD
Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

Norhani Abdullah, PhD
Professor
Faculty of Biotechnology and Molecular Sciences
Universiti Putra Malaysia
(Member)

Ho Yin Wan, PhD
Professor
Institute of Biosciences
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I declare that the thesis is my original work except for quotations and citations, which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

SEYED EEMAN NOORAAEE

Date: 14 June 2013
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>x</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>xii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xx</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xxii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxiii</td>
</tr>
</tbody>
</table>

1 INTRODUCTION

2 LITERATURE REVIEW

2.1 Introduction 5
2.2 Definition of probiotic and direct-fed-microbial 5
2.3 Earliest studies 7
2.4 The yeast flora of the rumen 8
2.5 The effects of yeast culture (*Saccharomyces cerevisiae*) on nutritional parameters
 2.5.1 Dry matter intake (DMI) 9
 2.5.2 Rumen pH 11
 2.5.3 Volatile fatty acids, NH$_3$, CH$_4$ 12
2.6 The effects of yeast culture on nutrient digestibility and degradability 16
2.7 The effects of yeast culture on ruminal microbial population 19
2.8 The effect of yeast culture on production and efficiency in ruminant 20
2.9 Mode of action of *Saccharomyces cerevisiae* 22
2.10 Taxonomy of *Kluyveromyces marxianus* 26
2.11 Potential applications of *Kluyveromyces marxianus* in biotechnology 27
2.12 Conclusion 29

3 CHARACTERIZATION AND IDENTIFICATION OF YEAST ISOLATES FROM TRADITIONAL FERMENTED RICE (TAPAI) AND HOME-MADE WINE

3.1 Introduction 30
3.2 Materials and Methods
 3.2.1 Sources of yeasts 32
 3.2.2 Enrichment procedure 32
 3.2.3 Isolation of yeasts 32
 3.2.4 VFA-supplemented medium 34
 3.2.5 Growth of isolates in VFA supplemented medium 34
 3.2.6 Ethanol production of isolates in VFA supplemented medium 34
 3.2.7 Identification of isolates: 35
 3.2.8 Statistical analysis 36
3.3 Results and Discussion 36
3.4 Conclusion 44
4 EFFECT OF Kluyveromyces marxianus WJ1 ON FERMENTABILITY AND APPARENT DRY MATTER DIGESTIBILITY OF DIFFERENT SUBSTRATES IN VITRO

4.1 Introduction
4.2 Materials and Methods
 4.2.1 Experiment I: In vitro gas production technique
 4.2.2 Experiment II: Two-stage in vitro digestion technique
 4.2.3 Statistical analysis
4.3 Results and Discussions
 4.3.1 Experiment I
 4.3.2 Experiment II
4.4 Conclusion

5 EFFECT OF Kluyveromyces marxianus WJ1 ON RUMEN FERMENTATION, NUTRIENT DIGESTIBILITY, RUMEN MICROBIAL POPULATION AND BODY WEIGHT GAIN IN GOATS

5.1 Introduction
5.2 Materials and Methods
 5.2.1 Experiment I: fermentation and digestibility experiment
 5.2.2 Experiment II: Production experiment on goats
5.3 Results and discussion
 5.3.1 Experiment I
 5.3.2 Experiment II
5.4 Conclusion

6 GENERAL DISCUSSION AND RECOMMENDATION
REFERENCES
APPENDICES
BIODATA OF STUDENT
LIST OF PUBLICATIONS