MICROENCAPSULATION AND FLAVOR STABILITY OF SPRAY-DRIED OLEORESIN FROM WATER DROPWORT (Oenanthe javanica) AND KACIP FATIMAH (Labisia pumila)

PARVEEN DEVI A/P PATTIRAM

FSTM 2013 2
MICROENCAPSULATION AND FLAVOR STABILITY OF SPRAY-DRIED OLEORESIN FROM WATER DROPWORT (Oenanthe javanica) AND KACIP FATIMAH (Labisia pumila)

By

PARVEEN DEVI A/P PATTIRAM

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirement for the Degree of Master of Science

June 2013
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Master Science

MICROENCAPSULATION AND FLAVOR STABILITY OF SPRAY-DRIED OLEORESIN FROM WATER DROPWORT (Oenanthe javanica) AND KACIP FATIMAH (Labisia pumila)

By

PARVEEN DEVI A/P PATTIRAM

June 2013

Chairman: Associate Professor Lasekan Olusegun Olaniyi, PhD

Faculty: Food Science and Technology

Water Dropwort (Oenanthe javanica) is a perennial herb with distinctive aroma and taste. It is cultivated in marshy places of Asia and Australia. Besides that, “Kacip Fatimah” (Labisia pumila) is a small herbaceous under shrub that roots and stems. There were three objectives established in this study that are identification and sensory characterization of compounds from water dropwort (Oenanthe javanica) and “Kacip Fatimah” (Labisia pumila). Second objective is stability of aroma-active constituents in oleoresin of Water dropwort (Oenanthe javanica) and “Kacip Fatimah” (Labisia pumila) herbs during spray drying at 170±2°C and 180±2°C. Thirdly is to study the effect of storage condition on the release flavors profiles of the encapsulated water dropwort (Oenanthe javanica) and “Kacip Fatimah” (Labisia pumila) oleoresin. The first part in this study was established by GC-MS and GC-O analysis to identify the chemical constituents of the oleoresins from both water dropwort and “Kacip Fatimah” leaves. A
total of 41 compounds were identified in Water dropwort. The major compound obtained was richer in diterpenes such as incensole (9.04%). However, 33 compounds were obtained from “Kacip Fatimah” and predominated with sesquiterpenes alcohol such as T-cadinol (13.33%). Furthermore, stability of aroma-active constituents in oleoresin of Water dropwort and “Kacip Fatimah” were successfully conducted by using microencapsulation technique with a combination of gum Arabic (1.5%) and food grade gelatin (2.5%) in the formulation of spray dried encapsulated leaves extracts whereby, inlet temperatures of 170±2 °C and 180±2 °C with constant outlet temperature 84°C±4 °C and the feed rate of 6 rpm were established for both leaves. At drying temperature 170±2 °C and 180±2 °C, a total of volatile compounds of water dropwort were reduced from 41 compounds to 9 and 6 compounds respectively. Incensole has the highest concentration at these both drying temperatures (29.49% and 37.49%) respectively. Meanwhile, in “Kacip Fatimah” also found reduction in number of volatile compounds from initially 33 compounds to 25 and 12 compounds respectively. T-cadinol has among the highest concentration at these drying temperatures 170±2 °C (22.56%) and 180±2 °C (33.18%). Finally, study the effect of storage condition on the release flavors profiles of the encapsulated water dropwort (Oenanthe javanica) and “Kacip Fatimah” (Labisia pumila) oleoresin was established. The microcapsules were stored under the same temperature at 45±2 °C and 24 % RH for further studies. The microcapsules were maintained for 30 days in a climate chamber. The numbers of volatile compounds in microcapsules of water dropwort were reduced drastically after day 24. For instance, at drying temperature 170±2 °C, encapsulated water dropwort has reduced to 2 compounds as compared with day 6 (6 compounds). Encapsulated “Kacip Fatimah” also showed the same reduction whereby, a total of 5 compounds were detected at 24 days of storage as
compared to 25 compounds detected at 6 days storage. At 180±2 °C drying temperature, encapsulated water dropwort and “Kacip Fatimah” showed the volatile compounds reduced after 18 days of storage. A total of 4 and 3 compounds respectively were detected as compare with 6 days of storage (5 and 2 compounds were identified) respectively. Volatile compounds were no detected in both encapsulated water dropwort and “Kacip Fatimah” at day 30 which is probably caused by the invisible cracks on the surface of the microcapsules. Overall, particle size and emulsion size of microcapsules also increased due to agglomeration occurs after storage. From this study, it can be concluded that encapsulated water dropwort and “Kacip Fatimah”, incensole and T-cadinol have the highest concentration during storage.
Abstrak thesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

PEMIKROKAPSULAN DAN KESTABILAN PERISA SEMBURAN-PENYALIRAN OLEORESIN WATER DROPWORT (Oenanthe javanica) DAN KACIP FATIMAH (Labisia pumila)

Oleh

PARVEEN DEVI A/P PATTIRAM

Jun 2013

Pengerusi: Profesor Madya Lasekan Olusegun Olaniyi, PhD

Fakulti: Sains dan Teknologi Makanan

“Water dropwort” (Oenanthe javanica) ialah herba yang mempunyai aroma dan rasa yang tersendiri. Kebanyakan herba ini terdapat di tempat yang paya di Negara Asia dan Australia. Selain daripada itu, Kacip Fatimah (Labisia pumila) ialah herba yang kecil yang tumbuh di bawah pokok renek dari akar dan batang. Terdapat tiga objektif dijalankan dalam kajian ini iaitu Mengenalpasti dan pencirian deria sebatian daripada “water dropwort” (Oenanthe javanica) and Kacip Fatimah (Labisia pumila). Objektif kedua adalah kestabilan juzuk aroma-aktif dalam oleoresin daripada “water dropwort” (Oenanthe javanica) and Kacip Fatimah (Labisia pumila) herba semasa pengeringan sembunan pada 170±2°C and 180±2°C. Ketiga adalah untuk mengkaji kesan keadaan penyimpanan di atas rasa pembebasan profil terkandung “water dropwort” (Oenanthe javanica) and Kacip Fatimah (Labisia pumila) oleoresin. Bahagian pertama dalam kajian
ini telah menggunakan analisis GC-MS and GC-O untuk mengenalpasti juzuk kimia dan aroma dari oleoresin dari kedua-dua daun tersebut. Jumlah sebanyak 41 sebatian meruap telah dikenalpasti dalam “water dropwort”. Sebatian utama yang diperolehi adalah kaya dengan diterpenes seperti incensole (0.95%). Walaubagaimanapun, 33 sebatian meruap telah diperolehi dalam Kacip Fatimah dan dikuasai dengan alkohol sesquiterpenes seperti T-cadinol (29.14%). Selanjutnya, kestabilan juzuk aroma-aktif dalam oleoresin daripada “water dropwort” dan Kacip Fatimah telah berjaya dijalankan dengan menggunakan teknik pemikrokapsulan dengan gabungan gam Arabik (1.5%) dan gelatin gred makanan (2.5%) di dalam formulasi sebunan kering terkandung daun dimana, suhu dalaman 170±2 °C dan 180±2 °C dengan suhu luaran malar 84±4 °C dan kadar 6 rpm telah ditubuhkan untuk kedua-dua daun. Pada suhu 170±2 °C dan 180±2 °C, jumlah sebatian meruap dari “water dropwort” telah berkurang dari 41 kompoun ke 9 dan 6 kompauan masing-masing. Didapati incensole mempunyai kepekatan yang tertinggi dalam kedua-dua suhu pengeringan (29.49% dan 37.49%) masing-masing. Sementara itu, dalam Kacip Fatimah juga mendapati pengurangan dalam bilangan sebatian meruap ia itu dari mulanya 33 kompaun ke 25 dan 12 kompauan masing-masing. T-cadinol mempunyai antara kepekatan yang tertinggi di kedua-dua suhu pengeringan 170±2 °C (22.56%) dan 180±2 °C (33.18%). Akhirnya, mengkaji kesan keadaan penyimpanan di atas rasa pembebasan profil terkandung daripada “water dropwort” dan Kacip Fatimah. Mikrokapsul telah disimpan di bawah suhu yang sama pada 45±2 °C dan 24% RH untuk melanjutkan kajian. Mikrokapsul telah dikekalkan selama 30 hari di dalam ruang iklim. Bilangan sebatian meruap dalam mikrokapsul “water dropwort” telah berkurang secara drastik selepas hari ke-24. Sebagai contoh, pada suhu pengeringan 170±2 °C, sebunan kering terkandung “water dropwort” telah berkurang kepada 2 kompaun jika berbanding
ACKNOWLEDGEMENTS

Praise to God for His help and guidance that finally I am able to complete my Master of Science. First and foremost, I would like to extend my deepest gratitude to the entire individual that has been involved in this research. First of all, a special thanks to my supervisory committee Associate Professor Dr. Lasekan Olusegun Olaniyi, Professor Dr. Tan Chin Ping and Professor Dr. Mohammad Zaidul Islam Sarker for their willingness in overseeing the progress of my research work from its initial phases till the completion of it. I do believe that all their advice and comments are for the benefit of producing the best research work.

Secondly, to my mother, Deviki A/P Karam Singh and my brothers who have been a constant source of support in emotional, moral and of course financial during my postgraduate years, and this thesis would certainly not have existed without them. I also dedicate this thesis to my beloved late father who made me interested in science background and encouraged me to continue my studies.

I am also grateful to the staff of Faculty of Food Science and Technology, Universiti Putra Malaysia for their kindness in handling their work. Last, but not the least to my lab members, my close friends Shamala A/P Salvamani and Nurul Hanisah Binti Juhari and to all my colleagues as well. Their view and tips are useful indeed.
I certify that a Thesis Examination Committee has met on 13 June 2013 to conduct the final examination of Parveen Devi a/p Pattiram on her thesis entitled “Microencapsulation and flavor stability of spray-dried oleoresin from Water dropwort (Oenanthe javanica) and Kacip Fatimah (Labisia pumila)” in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U. (A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Farinazleen Mohd Ghazali, PhD
Title: Associate Professor
Name of Faculty: Food Science and Technology
Universiti Putra Malaysia
(Chairman)

Sharifah Kharidah Syed Muhamad, PhD
Title: Associate Professor
Name of Faculty: Food Science and Technology
Universiti Putra Malaysia
(Internal Examiner)

Abdul Karim Sabo Mohamed, PhD
Title: Associate Professor
Name of Faculty: Food Science and Technology
Universiti Putra Malaysia
(Internal Examiner)

Zaibunnisa Abdul Haiyee, PhD
Title: Senior Lecturer
Name of Faculty: Fakulti Sains Gunaan
Universiti Teknologi Mara
Malaysia
(External Examiner)

NORITAH OMAR, PhD
Assoc. Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 16 August 2013
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Lasekan Olusegun Olaniyi, PhD
Associate Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Chairman)

Tan Chin Ping, PhD
Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Member)

Mohammad Zaidul IslamSarker, PhD
Professor
Faculty of Pharmacy
International Islamic University Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I declare that the thesis is my original work except for the quotation and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

PARVEEN DEVI A/P PATTIRAM

Date: 13 June 2013
TABLE OF CONTENTS

ABSTRACT ii
ABSTRAK v
ACKNOWLEDGEMENT viii
APPROVAL ix
DECLARATION xi
LIST OF TABLES xv
LIST OF FIGURES xviii
LIST OF APPENDICES xx
LIST OF ABBREVIATIONS xxiv

CHAPTER

1 INTRODUCTION 1

2 LITERATURE REVIEW 5
2.1 Water Dropwort (Oenanthe javanica) 5
2.2 Kacip Fatimah (Labisia pumila) 8
2.3 Oleoresin 11
2.4 Flavor 11
2.5 Microencapsulation 12
2.5.1 Classifications of microencapsulation 14
2.5.2 The uses of microencapsulation 16
2.5.3 Type of microencapsulation materials 16
2.6 Spray drying 17
2.7 Particle size 18
2.8 Scanning Electron Microscope (SEM) 19
2.9 Solvent extraction 20
2.10 Gas Chromatography (GC) 22
2.10.1 Gas Chromatography-Flame Ionization Detector (GC-FID) 22
2.10.2 Gas Chromatography-Mass Spectrometry (GC-MS) 25
2.10.3 Gas Chromatography-Olfactometry (GC-O) 26
2.10.3.1 GC-O methodologies 27
2.10.3.2 Detection frequency 27
2.10.3.3 Direct intensity 28
2.10.3.4 Dilution to threshold 28
2.10.3.5 Human detector performance 29

3 IDENTIFICATION AND SENSORY CHARACTERIZATION OF COMPOUNDS FROM WATER DROPWORT (Oenanthe javanica) AND KACIP FATIMAH (Labisia pumila) 30
3.1 Introduction 31
3.2 Materials and methods

3.2.1 Materials
- Preparation of fresh herbs
- Extraction of dried herbs
- Gas Chromatography-Mass Spectrometry (GC-MS) analysis
- Gas Chromatography-Olfactometry (GC-O) analysis
- Identification of compounds

3.2.2 Preparation of fresh herbs

3.2.3 Extraction of dried herbs

3.2.4 Gas Chromatography-Mass Spectrometry (GC-MS) analysis

3.2.5 Gas Chromatography-Olfactometry (GC-O) analysis

3.2.6 Identification of compounds

3.3 Results and discussion

**3.3.1 Quantification of the aroma-active constituents from Water dropwort (*Oenanthe javanica*) and Kacip Fatimah (*Labisia pumila*)

3.4 Conclusion

4 STABILITY OF AROMA-ACTIVE CONSTITUENTS IN OLEORESIN OF WATER DROPWORT (*Oenanthe javanica*) AND KACIP FATIMAH (*Labisia pumila*) HERBS DURING SPRAY DRIED AT 170°C AND 180°C

4.1 Introduction

4.2 Materials and methods

4.2.1 Encapsulation process

4.2.2 Moisture content determination

4.2.3 Quantification of encapsulated aroma-active constituents of herbs in the powder

4.2.3.1 Gas Chromatography-Mass Spectrometry (GC-MS) analysis

4.2.3.2 Gas Chromatography-Olfactometry (GC-O) analysis

4.2.4 Morphological characteristics by scanning electron microscope (SEM)

4.3 Results and discussion

4.3.1 Encapsulation process

4.3.2 Moisture content determination

4.3.3 Quantification of encapsulated aroma-active constituents of herbs

4.3.4 Morphological characteristic by scanning electron microscopy (SEM)

4.3.5 Particle size analysis

4.4 Conclusion

5 STUDY THE EFFECT OF STORAGE CONDITION ON THE RELEASE FLAVORS PROFILE OF THE ENCAPSULATED WATER DROPWORT (*Oenanthe javanica*) AND KACIP FATIMAH (*Labisia pumila*) OLEORESIN

5.1 Introduction

5.2 Materials and methods
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2.1</td>
<td>Release of flavor from the spray-dried powder at a constant temperature and humidity</td>
<td>69</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Morphological characteristic by scanning electron microscopy (SEM)</td>
<td>69</td>
</tr>
<tr>
<td>5.2.3</td>
<td>Powder particle size analysis</td>
<td>69</td>
</tr>
<tr>
<td>5.2.4</td>
<td>Emulsion particle size</td>
<td>70</td>
</tr>
<tr>
<td>5.2.5</td>
<td>Aroma quantification of encapsulated powdered herbs during storage</td>
<td>70</td>
</tr>
<tr>
<td>5.2.6</td>
<td>Herbs’ flavors retention in stored powders</td>
<td>70</td>
</tr>
<tr>
<td>5.2.7</td>
<td>Release time-course of the encapsulated flavors</td>
<td>71</td>
</tr>
<tr>
<td>5.2.8</td>
<td>Statistical analysis</td>
<td>71</td>
</tr>
<tr>
<td>5.3</td>
<td>Results and discussion</td>
<td>72</td>
</tr>
<tr>
<td>5.3.3</td>
<td>Morphological characteristic by scanning electron microscopy (SEM) of the encapsulated Kacip Fatimah during the storage condition</td>
<td>80</td>
</tr>
<tr>
<td>5.3.4</td>
<td>Powder particle size analysis of storage encapsulated Water dropwort and Kacip Fatimah</td>
<td>87</td>
</tr>
<tr>
<td>5.3.5</td>
<td>Emulsion particle size of stored encapsulated Water dropwort and Kacip Fatimah</td>
<td>100</td>
</tr>
<tr>
<td>5.3.6</td>
<td>Moisture content analysis of storage encapsulated Water dropwort and Kacip Fatimah</td>
<td>94</td>
</tr>
<tr>
<td>5.3.7</td>
<td>Retention of herbs’ flavors in the stored encapsulated powders Water dropwort and Kacip Fatimah</td>
<td>95</td>
</tr>
<tr>
<td>5.3.8</td>
<td>Quantification of encapsulated aroma-active constituents of Water dropwort (Oenanthe javanica) and Kacip Fatimah (Labisia pumila) that spray dried at 170±2°C and 180±2°C and stored for 30 days at constant temperature at 45±2°C and 25% relative humidity</td>
<td>98</td>
</tr>
<tr>
<td>5.3.9</td>
<td>Release time course of the encapsulated Water dropwort (Oenanthe javanica) and Kacip Fatimah (Labisia pumila) during storage</td>
<td>119</td>
</tr>
<tr>
<td>5.4</td>
<td>Conclusion</td>
<td>121</td>
</tr>
<tr>
<td>6</td>
<td>SUMMARY, GENERAL CONCLUSION AND RECOMMENDATION FOR FUTURE RESEARCH</td>
<td>122</td>
</tr>
<tr>
<td></td>
<td>REFERENCES</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td>APPENDICES</td>
<td>135</td>
</tr>
<tr>
<td></td>
<td>BIODATA OF STUDENT</td>
<td>149</td>
</tr>
<tr>
<td></td>
<td>LIST OF PUBLICATIONS</td>
<td>150</td>
</tr>
</tbody>
</table>