

UNIVERSITI PUTRA MALAYSIA

VIBRATION ANALYSIS OF SIMPLY SUPPORTED BEAM-TYPE VIBRATION ABSORBER

MOTHANNA YASEN ABD

FK 2010 25

VIBRATION ANALYSIS OF SIMPLY SUPPORTED BEAM-TYPE VIBRATION ABSORBER

By MOTHANNA YASEN ABD

Thesis Submitted to the School of Graduate Studies, University Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

March 2010

Abstract of thesis presented to the senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science.

VIBRATION ANALYSIS OF SIMPLY SUPPORTED BEAM-TYPE VIBRATION ABSORBER

By

MOTHANNA YASEN ABD

March 2010

Chairman: Nawal Aswan Bin Abdul Jalil, PhD

Faculty: Faculty of Engineering

Beam-type structures have wide applications, for example civil or mechanical engineering. A simply supported beam is widely used in many areas like bridges and double-beam structures. Excessive vibration in such structures especially at the resonance can cause the structural failure. There are two techniques for suppressing the vibration in the beam-structures that have been studied previously; conventional and continuous vibration absorbers. A beam-type vibration absorber is one of the continuous vibration absorber applications and it is used to suppress the vibration of the main beam. Solving the vibration problem of such kind of structure is difficult and complicated, because the motion equations of the system are coupled. The equations cannot be analytically solved before decoupling them. Therefore, some mathematical transformation and variables variation methods were considered to solve this problem, but it is still under the limitation of identical beams. This means that the analytical method is valid just for identical beams. The main objective of this research study is to propose an easy and efficient method to solve the problem of the beam absorber system. In addition, there are subobjectives have been achieved in this thesis; to study the effect elasticity ration of the main and absorber beams, to study the effect of the moving mass inertia on the main beam response, and finally to find the optimum design for the absorber system. The objectives have been achieved by developing the damping factor formulation of dynamic vibration absorber, and by using Time integration method in aided MATLAB. That was in the theoretical study. An experimental test has been performed by using LMS software to observe the performance of the absorber beam in suppressing the main beam vibration. The numerical results showed good agreement with the literature. That means the proposed method has been successfully developed. The experimental results showed good agreement with the numerical results. In other hand, it was found from the results that the effect of the moving mass inertia on the main beam response can be reduced by increasing the layer stiffness. Also, it has been noted that the elasticity ratio can be improved to find the optimum design of the absorber beam system by increasing its value and decreasing the mass ratio of the main and absorber beams. Finally, the numerical results proved that the proposed method is more effective than the methods used in previous works, because it valid for identical and non-identical beams.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

ANALISIS GETARAN UNTUK REDAMAN GETARAN RASUK SOKONGAN MUDAH

Oleh

MOTHANNA YASEN ABD

Mac 2010

Pengerusi: Nawal Bin Abdul Jalil, PhD

Fakulti: Fakulti Kejuruteraan

Struktur jenis rasuk memiliki pelbagai aplikasi di dalam kejuruteraan awam atau kejuruteraan mekanikal. Rasuk disangga mudah banyak digunakan secara meluas di dalam pelbagai struktur seperti jambatan. Getaran berlebihan di dalam struktur terutamanya ketika resonan boleh menyebabkan kegagalan struktur. Terdapat dua kaedah untuk menahan getaran pada struktur jenis rasuk iaitu penyerap getaran biasa dan penyerap getaran berterusan. Penyelesaian masalah getaran struktur adalah sukar dan kompleks, kerana persamaan pergerakan dalam sistem adalah berkesinambungan. Oleh kerana itu, kaedah transformasi matematik boleh digunakan untuk menyelesaikan masalah ini, tetapi penggunaannya terhad kepada jenis rasuk yang sama. Kajian ini menunjukkan cara yang lebih mudah untuk menyelesaikan masalah ini dengan menggunakan kaedah integrasi masa dan formulasi semula nisbah redaman. Melalui kajian ini juga, kesan nisbah ketegaran dan inersia untuk jisim bergerak di atas respon rasuk utama dinilai. Selain itu, kajian eksperimen dijalankan untuk mengesahkan keputusan teori.

Keputusan berangka menunjukkan persamaan yang baik dengan kajian yang sebelumnya. Keputusan eksperimen menunjukkan kesepakatan yang baik dengan

keputusan teori. Juga didapati bahawa nisbah redaman yang dikaji lebih berkesan daripada nisbah redaman dalam kajian terdahulu. Didapati bahawa kesan inersia jisim bergerak pada respon rasuk utama boleh dikurangkan dengan meningkatkan ketegaran lapisan.Walaubagaimanapun, bahan dengan jisim yang rendah dan berketegaran yang tinggi, tidak boleh didapati di pasaran, maka ia memerlukan pengeluaran bahan khas seperti bahan komposit. Namun, kajian ini berguna sebagai panduan dalam merekabentuk sistem peredam jenis rasuk.

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude and deep thanks to my supervisor, Dr. Nawal Aswan bin Abdul Jalil for his kind assistance, support, advice, encouragements and suggestions throughout this work and during the preparation of this thesis.

I would also like to express my appreciation to Associate Professor Dr. Jamaloddin Noorzaei and Associate Professor Dr. Ibragimov Gafurjan for their suggestions and constructive criticisms given at different stages of this study.

I would also like to express my appreciation to Professor Ir. Dr. Barkawi Bin Sahari for facilitation of the working in the test lab.

I would like to express my indebtedness to my family for their financial and moral support through this long journey.

Finally, my heartfelt appreciation also goes to all my colleagues for their useful ideas and critical.

I certify that an Examination Committee met on 11th March 2010 to conduct the final examination of Mothanna Yasen Abd on his Master of Science thesis entitled "Vibration Analysis of Simply Supported Beam-Type Structures" in accordance with the Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the student be awarded the degree of Master of Science.

Members of the Examination Committee are as follows:

Norzima Zulkifli, PhD

Professor Faculty of Engineering Universiti Putra Malaysia (Chairman)

Aidy Ali, PhD

Senior Lecturer Faculty of Engineering Universiti Putra Malaysia (Internal Examiner)

Faizal Mustapha, PhD

Senior Lecturer Faculty of Engineering Universiti Putra Malaysia (Internal Examiner)

Roslan Abd Rahman, PhD

Professor Faculty of Engineering Universiti Teknologi Malaysia (External Examiner)

> BUJANG KIM HUAT, PhD Professor and Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date:

This thesis was submitted to the senate of Universiti Putra Malaysia as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Nawal Aswan Abdul Jalil, PhD Senior Lecturer Faculty of Engineering Universiti Putra Malaysia (Chairman)

Jamalodin Noorzaei , PhD Associate Professor Faculty of Engineering Universiti Putra Malaysia (Member)

Ibragimov Gafurjan, PhD

Associate Professor Faculty of science Universiti Putra Malaysia (Member)

HASANAH MOHD GHAZALI, PhD

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date: 10 June 2010

DECLARATION

I declare that the thesis is my original work except for the quotations and citation which have been duly acknowledged. I also declare that it has not been previously and is not concurrently submitted for any other degree at Universiti Putra Malaysia or at any other institutions.

TABLE OF CONTENT

	Page
ABSTRACT	ii
ABSTRAK	iv
ACKNOWLEDGEMENTS	vi
APPROVAL	vii-viii
DECLARATION	ix
LIST OF TABLES	xii
LIST OF FIGURES	xiv
LIST OF NOMENCLATURE	xix

CHAPTER

 $\overline{\mathbf{C}}$

1	INTR	ODUCTION	1
	1.1	Introduction	1
	1.2	Problem statement	3
	1.3	Research objective	3
	1.4	Scope of the work	4
	1.5	Hypothesis	6
	1.6	Thesis outline	6
2	LITE	RATURE REVIEW	7
	2.1	Introduction	7
	2.2	Vibration absorber (concept and application)	7
		2.2.1 Conventional absorber application	8
		2.2.1.1 Some application of the	13
		conventional absorber	
		2.2.2 Beam –type vibration absorber	15
		application	
	2.3	Applications of the absorber beam:	19
	2.4	Dynamic analysis of beam vibration absorber	21
		2.4.1 Analytical methods	22
		2.4.2 Numerical methods	23
	2.5	Modal analysis of the undamped absorbing	25
		beam	
		2.5.1 Free vibration analysis of the undamped absorbing beam system	27
		2.5.2 Forced vibration of the absorbing beam	30
		system	
	2.6	Discussion	31
3	THEO	DRETICAL STUDY	35
	3.1	Introduction	35
	3.2	Numerical time integration method	37
		3.2.1 Step-by-step solution by using Wilson- θ method	38
	3.3	Damping analyzing of the absorbing beam system	40
	3.4	Damping factor evaluation	42

	3.5	Moving mass simulation	44
	3.6	Dimensionless structural parameters	46
	3.7	Numerical Simulation by MAT LAB	47
	3.8	Design of the Beam Absorbing system	50
		3.8.1 Frequency response of undamped	50
		Absorbing System	
		3.8.2 Frequency response of damped	55
		absorbing system	
	3.9	Optimum Design of Rigidity ratio e	58
	3.10	Concluding and Remarks	61
	5.10	concluding and Remarks	01
4	EXPH	CRIMENTAL INVESTIGATION	62
	4.1	Introduction	62
	4.2	Experimental model	63
	4.3	Measurement Equipments	65
	4.4	Measurement Points	65
	4.5	Exciting the System	67
	4.6	Signal Processing	69
	4.7	System Analysis	69
	4.8	Frequency domain function analysis	72
	4.9	Fast Fourier Transform (FFT)	73
	4.10	Amplitude formats	74
	4.11	Discussion	75
5	RESU	JLTS AND DISCUSSION	76
	5.1	Introduction	76
	5.2	Method verification	76
	<mark>5.3</mark>	Effect of rigidity ratio for undamped case	81
	5 <mark>.</mark> 4	Damping effect on the mid span beam	91
		subjected to moving load	
	5.5	Damping effect on main beam resonance	97
	5.6	Moving mass inertia effect on the mid span	100
		displacement	
	5.7	Optimization	104
		5.7.1 Optimization of the undamped case	104
		5.7.2 Optimization of damped case	114
	5.8	Experimental results	119
		5.8.1 Case I- Steel absorber beam	120
		5.8.2 Case II-Aluminum absorber beam	122
		5.8.3 Case III- Wood absorber beam	123
	5.9	Test accuracy	125
	5.10	Conclusions and Remarks	129
6	CON	CLUSIONS AND ROCOMMENDATIONS	131
	6.1	Conclusions	131
	6.2	Recommendation for future works	132
REFER	134		
APPENDICES			137
BIODA	141		
LIST OI	142		