UNIVERSITI PUTRA MALAYSIA

DESIGN AND DEVELOPMENT OF A DIGGING DEVICE
FOR HARVESTING SWEET POTATO

MD. AKHIR BIN HAMID

FK 2010 70
DESIGN AND DEVELOPMENT OF A DIGGING DEVICE FOR HARVESTING SWEET POTATO

By

MD. AKHIR BIN HAMID

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

October 2010
This thesis describes a study on the design, fabrication and testing of a prototype sweet potato digging device for harvesting sweet potato tubers in bris soil. Design of the digging device was based on a soil bin study having bris soil with mean moisture content of 9.16% wet basis. The soil texture was sandy soil (fine sand 94.53%), and the mean bulk density of soil was 1.44 g cm\(^{-3}\). Three types of soil digging tools were designed and fabricated to determine the optimum draft force. These were plane, V-shaped and Hoe type blades. Plane and V-shaped blades were 30 cm long, and 13 cm wide, while the Hoe type had three rods, 25 mm diameter, 30 cm long and 6.5 cm wide with sharp cutting edge. The digging tools were tested in a soil bin filled with bris soil to determine the optimum draft force. The experiments were conducted at three depths and rake angles. All experiments were replicated three times at a constant speed of 0.06 m s\(^{-1}\). The results from this study were analysed and the best type was selected, fabricated and used as the prototype harvesting device.

Analysis of variance (ANOVA) for all blade types and rake angle show that, there were no significant differences between blade type and rake angle on draft force, vertical force, moment and area of soil disturbance. Comparison between all blade
types and blade depths to measured draft force and area of soil disturbance showed
that the highest draft of 0.54 kN was caused by plane blade at the optimum depth of
20 cm with 0.180 m\(^2\) of soil disturbance area. The V- shaped blade had the mean draft
of 0.51 kN at the optimum depth of 20 cm. The area of soil disturbance was 0.185
m\(^2\). The best choice was V-shaped blade with rake angle of 30° at depth of 20 cm.
The hoe-type tool had a mean draft of 0.34 kN and soil disturbance area of 0.184 m\(^2\).
The hoe-type was not selected because of excessive damage to tubers.

Based on the above information a double row sweet potato harvesting device was
designed and developed. The machine was designed and developed at the
Mechanization and Automation Centre, Malaysian Agricultural and Development
Research Institute (MARDI) workshop. The machine consists of digger blades,
double disc coulter for cutting vines, digger blade guide, and adjustable drum for
blade digger depth control during operation, conveyor lifter, conveyor separator and
bucket collector. Digging blade depth is adjustable with common hand tools. The
harvester was designed to be pulled by Standard Four–wheel tractor of 70 HP or
larger. The tractor power requirement was estimated by Algorithm analysis and tool
draft force predicted by Hettiaratchi and Reece’s model. Under normal operation, the
machine requires three persons; one tractor driver and labourers on the harvester
platform to collect the sweet potato tubers. The machine was tested on bris soil at
Mardi Station, Telong, Kelantan. The digger blade was set at 35 cm depth since the
average tuber zone depth was 30 cm, tractor engine speed between 1700 – 2000 rpm
and PTO speed setting at 540 rpm during operation. The mean effective work of the
machine in bris soil was 93.64 and 90.49% for Telong and VitAto varieties
respectively. The average ground speed and turning time during operation was 0.56
km-hr\(^{-1}\) and 102.7 s and 0.99 km-hr\(^{-1}\) and 81.22 s for plots A and B respectively. The different results in tractor speed and turning for both plots were due to the different drivers operating the prototype machines. Other factors include the difference of plot size. Plot A had 50 m long seedbed while Plot B, 70 m. The harvesting efficiencies for both plots were above 90% and show no significant difference. The total productive time (harvesting time) and unproductive time (turning time) in plot A, with tractor speed 0.56 km-hr\(^{-1}\), was 14.8 hours for harvesting a hectare of sweet potato (0.068 ha-hr\(^{-1}\)). In plot B, the total time for harvesting a hectare of sweet potato was 8.35 hours (0.12 ha-hr\(^{-1}\)) with tractor speed of 0.99 km-hr\(^{-1}\). The average harvesting time for both plots was 11.47 hr-ha\(^{-1}\). The average field work rate was 0.087 ha-hr\(^{-1}\) or 34 man-hr-ha\(^{-1}\) compared to manual harvesting of 150 man hr-ha\(^{-1}\).
MEREKABENTUK DAN MEMBINA SEBUAH PERANTI PENGGALI
UNTUK PENUAIAN KELEDEK

Oleh

MD. AKHIR BIN HAMID

October 2010

Pengerusi : Professor Desa Ahmad, PhD, P. Eng.

Fakulti : Kejuruteraan

Tesis ini menghuraikan kajian rekabentuk, pembangunan dan mengujiguna keatas peranti penggali, mesin penuaian ubi keledek ditanah bris. Tiga jenis peranti penggali diuji didalam kotak berisi tanah bris yang mempunyai kelembapan purata 9.16% pengkalan basah. Tekstur tanah adalah berpasir (pasir halus 94.53%), dan berketumpatan purata 1.44 g·cm⁻³. Tiga jenis peranti penggali digunakan dalam kajian adalah; jenis kepingan, jenis berbentuk V dan jenis hoe. Lebar mata pengorek bagi jenis kepingan rata dan berbentuk V adalah 13 cm dan panjangnya adalah 30 cm. Peranti jenis hoe mempunyai tiga batang besi 30 cm panjang dan bergaris pusat 25 mm dengan bahagian hujung pemotong yang tajam. Jarak diantara batang adalah 6.5 cm dan dipatrikan berbentuk cangkol bermata tiga. Ketiga-tiga jenis peranti penggali ini diuji dalam kotak tanah berisi tanah bris bagi menentukan daya tarikan yang optimum. Percubaan dilakukan pada tiga tahap kedalaman dan sudut tusukan. Semua ujikaji diulang sebanyak tiga kali pada kelajuan malar 0.06 m·s⁻¹. Keputusan jenis penggali yang terbaik dipilih untuk digunakan dalam rekabentuk prototaip mesin penuai keledek.
Analisis varians (ANOVA) untuk semua jenis peranti penggali dan sudut tusukan menunjukkan bahawa, tidak ada perbezaan yang signifikan antara jenis peranti penggali dan sudut tusukan peranti penggali ke atas daya tarikan, daya menegak, momen dan luas kawasan gangguan tanah. Perbandingan antara semua jenis peranti pengorek dan kedalamanya menunjukkan peranti pengorek jenis kepingan menghasilkan daya draft tertinggi 0.54 kN pada kedalaman 20 cm dan keluasan tanah terganggu adalah 0.180 m\(^2\). Peranti pengorek berbentuk V menghasilkan min daya tarikan sebanyak 0.51 kN pada ke dalaman 20 cm dengan keluasan tanah terganggu 0.185 m\(^2\). Peranti bentuk V dengan sudut 30\(^\circ\) dipilih dalam rekabentuk mesin penuai ubi keledek. Peranti berbentuk cangkol bermata tiga (hoe) mempunyai purata draft 0.34 kN dan 0.184 m\(^2\) keluasan tanah terganggu Walaupun peranti jenis ini mempunyai mean daya tarikan terendah, tetapi ianya tidak dipilih kerana bentuk pecahan tanah yang mendorong kerosakan yang tinggi pada ubi ketika beroperasi.

ubi. Mesin diuji di tanah bris di Mardi Station, Telong, Kelantan. Peranti penggali ditetapkan pada 35cm kedalaman, purata zon kedalaman ubi ialah 30 cm, kelajuan engine traktor pada kedudukan antara 1700-2000 rpm dimana PTO di setkan pada 540 rpm semasa operasi. Keputusan dari ujian mesin menunjukan purata keberkesanan kerja mesin di tanah bris adalah 93.64 dan 90.49% untuk keledek variti Telong dan VitAto. Purata kelajuan panduan trektor dan masa pusingan semasa pertukaran batas adalah 0.56 km jam⁻¹ dan 102.7 s dan 0.99 km-jam⁻¹ dan 81.22 s untuk plot A dan B setiap satu. Kelajuan pemanduan traktor berbeza bagi setiap plot kerana pemandu yang berbeza mengendalikan prototaip mesin penuai keledek. Faktor-faktor lain termasuklah perbezaan saiz plot. Plot A 50 m panjang sementara Plot B, 70 m. Kecekapan penuaian untuk kedua plot melebihi 90% dan tidak menunjukkan perbezaan yang signifikan. Jumlah masa produktif dan tidak produktif di plot A dengan traktor kelajuan 0.56 km-jam⁻¹ adalah 14.8 jam untuk menuai satu hektar ubi keledek (0.068 ha-jam⁻¹) manakala plot B, jumlah masa untuk menuai satu hektar ubi keledek adalah 8.35 jam (0.12 ha-jam⁻¹) dengan kelajuan traktor 0.99 km-jam⁻¹. Purata masa penuaian untuk kedua-dua plot adalah 11.47 jam-ha⁻¹. Purata kadar kerja diladang adalah 0.087 ha-jam⁻¹ bersamaan 34 orang-jam-ha⁻¹ berbanding dengan penuaian secara manual 150 jam-ha⁻¹.
ACKNOWLEDGEMENTS

At the outset, I bow to the grace and mercy of the Almighty Allah for the patience and strength bestowed upon me to complete this thesis. I would like to express my sincere gratitude to my respected supervisor Prof. Ir. Dr. Desa Ahmad, Head Department of Biological and Agricultural Engineering, Faculty of Engineering, Universiti Putra Malaysia, for his untiring inspiration, encouragement and invaluable guidance towards the write up of this thesis. Without his scholastic criticisms, whole-hearted assistance, unfailing interest, constructive criticism, continuous supervision and valuable suggestions throughout the period of this research, I would not have completed this thesis.

I would also like to express my deepest gratitude and indebtedness for the kind cooperation of my supervisory committee members Associate Prof. Ir. Dr. Azmi Yahya, Prof. Dr. Ir. Shamsuddin Sulaiman, Deputy Dean of Graduate School; and Dr. Ir. Ibni Hajar Rukunuddin, Director of Mechanization and Automation Research Center-MARDI in the successful completion of this study. Their contribution and suggestions helped to overcome many errors and showed me the right direction during the course of this work.

I would also like to express my gratitude to the Malaysian Agricultural Research and Development Institute (MARDI) for the financial support during this study at Universiti Putra Malaysia.

There are many other people whom I would like to thank for their help and support during this study at Universiti Putra Malaysia especially Mr. Wan Fariz Wan Azman,
Mr. Saleh Bardos, Mr Salleh Rusdi, Mr. Aris Abdullah and Mr. Rusdi who helped me a lot to complete my study, Mr Mohd. Anaur Mat of Innovasi Anggerik SDN. BHD. and Mr. Tajeri Hashim of Tasco SDN. BHD. for their assistance in the fabrication of the machine.

Thanks also go to Dr. Aimrun, Dr. Darius El Pebrian, Mr. Anuar Abdullah, Mr. Ahmad Ngalim, Mr. Badril Hisham and Mr. Hossein with whom I shared ideas for the completed study. Last but not least, I owe my greatest debt to my mother and my father and to my wife Zulaini bt. Ismail, my daughters Nur Izzah, Nur Hashimah, Nur A’Fifah, Nur Hani, Nur Jannah, Nur Hikmah Solehah and my only son Muhammad Sulaiman who have given me love and support throughout my study.
I certify that a Thesis Examination Committee has met on 14th October 2010 to conduct the final examination of Md. Akhir bin Hamid on his thesis entitled “Design and Development of A Sweet potato Digging Device” in accordance with Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Muhammad Salih b Hj. Ja’afar, Ir
Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Wan Ishak b Wan Ismail, PhD
Professor
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

Mohd Sapuan b Salit @ Sinon, PhD
Professor
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

Scott A. Shearer, PhD
Professor
University Of Kentucky
United State
(External Examiner)

--

SHAMSUDDIN SULAIMAN, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 18 January 2011
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirements for the degree of Doctor of Philosophy. The Members of the Supervisory Committee were as follows:

Desa Ahmad, PhD, P.Eng
Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Azmi Yahya, PhD, P.Eng
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Member)

Shamsuddin Sulaiman, PhD, P. Eng
Professor
Faculty of Engineering
Universiti Putra Malaysia
(Member)

Ibni Hajar Rukunnudin, PhD, P.Eng
Mechanization and Automation Research Center
Malaysian Agriculture Research and Development Institute (MARDI)
Serdang Selangor
(External Member)

HASANAH MOHD GHAZALI, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I declare that the thesis is based on my original work except for quotations and citations that have been duly acknowledged. I also declare that it has not been previously, and not concurrently, submitted for any other degree at Universiti Putra Malaysia or any other institution.

MD. AKHIR BIN HAMID

Date: 14 October 2010
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>viii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xviii</td>
</tr>
<tr>
<td>LIST OF PLATES</td>
<td>xx</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xxii</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>xxiv</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION
 1.1 Current Industry 2
 1.2 Potential for Sweet potato Commercial Cultivation 4
 1.3 Problem Statement 5
 1.4 Objectives of Study 6

2 LITERATURE REVIEW
 2.1 Root and Tuber crops 8
 2.2 World Scenario for Sweet potato Production 8
 2.3 Agronomic aspect of Sweet potato 10
 2.3.1 Bukit Naga 11
 2.3.2 Kuala Bikam 11
 2.3.3 Gendut 11
 2.3.4 Jalomas and Telong 12
 2.3.5 Vitato 12
 2.4 Production areas 12
 2.5 Land preparation 13
 2.6 Characteristics of Bris and Sand-tailing Soils 14
 2.7 Planting Practice and Spacing 15
 2.8 Tillage requirement 17
 2.9 Tillage practices 18
 2.9.1 Research on tillage practices 19
 2.9.2 Effect of tillage on sweet potato yield 20
 2.10 Agronomic practices 21
 2.10.1 Time of planting 21
 2.10.2 Density of planting 22
 2.10.3 Harvesting method 23
 2.11 Harvesting Practices 24
 2.11.1 Mechanised Digging Operations 25
2.12 Design concept of harvesting tools
2.12.1 Soil physical properties
2.12.2 Soil dynamic properties
2.12.3 Direct Shear Test
2.12.4 Tool Parameter
2.12.5 Mechanic of Tools
2.13 Analytical models
2.13.1 Payne’s Model
2.13.2 O’ Callaghan-Farrely’s Model
2.13.3 Hettiarachi-REECE’s Model
2.13.4 Godwin – Spoors Model
2.13.5 McKyes – Ali’s Model
2.14 Draft and Power Requirements of Digger Implements
2.14.1 Effect of Tool Parameters on Draft Requirement
2.14.2 Draft – Depth Relationship
2.14.3 Soil- Tool Interaction
2.14.4 Digger Tools
2.15 Summary of Review

3 MATERIALS AND METHODS
3.1 Soil and Crop Characteristics
3.1.1 Field data Collection
3.1.2 Determination of Tuber Zone
3.1.3 Bris Soil Properties
3.2 Digging Equipment Design
3.2.1 Experimental procedure
3.2.2 Extended Octagonal Ring Dynamometer (EORD)
3.2.3 Soil description and Soil bed preparation
3.2.4 Experimental Procedure with Model Tools
3.3 Design of a Sweet potato Harvesting Machine
3.3.1 Design Features
3.3.2 Design of Main Working Components of a Sweet potato Harvesting machine
3.3.3 Digger blade design and arrangement
3.3.4 Drum Depth controller
3.3.5 The Coulter Disc
3.3.6 Lifter Elevator
3.3.7 Separator Conveyor
3.3.8 Hopper and Guard
3.3.9 Sweet Potato Harvester Assembly
3.4 Machine fabrication
3.5 Field Observation and Performance Evaluation
3.5.1 Tractor Power Estimation
3.5.2 Experimental site
3.5.3 Field plot preparation
3.5.4 Experimental procedure
4 RESULTS AND DISCUSSION
4.1 Properties of Bris soil
4.1.1 Soil Texture 115
4.1.2 Moisture Content and Bulk Density 116
4.1.3 Soil Penetration in field 117
4.1.4 Tuber Zone 118
4.1.5 Cohesiveness, Internal friction angle, and Soil-Tool friction 119
4.2 Instrumentation Design 122
4.3 Measured Draft force in Model Soil Bin 122
4.3.1 Soil characteristic in soil bin 122
4.3.2 Draft force of model tool in soil bin 123
4.3.3 Effect of inclined angles on digger blade draft requirement 124
4.3.4 Soil disturbance effect of Various Digging Tools 126
4.3.5 Statistical Analysis of Draft Force Determination in a Soil Bin 130
4.3.6 Draft Force Prediction 135
4.3.7 Comparison with Other Methods 136
4.3.8 Summary Results and Discussion 141
4.4 Performance of the Prototype Designed Sweet potato Harvester
4.4.1 Manoeuvrability 143
4.4.2 Tuber digging Tool 143
4.4.3 Depth Control Drum 144
4.4.4 Other Harvester Components 144
4.4.5 Tuber Damage 145
4.4.6 Field performance 145

5 CONCLUSIONS 148

6 SUGGESTIONS FOR FURTHER STUDY 153

REFERENCES 155
APPENDIX-A 164
APPENDIX-B 183
APPENDIX-C 187
APPENDIX-D 206
BIODATA OF STUDENT