UNIVERSITI PUTRA MALAYSIA

ENHANCED ALGORITHM FOR ENERGY-SAVING MECHANISM AND FRAME RESPONSE TIME REDUCTION IN IEEE 802.16E WIMAX

ALAA M. BAKER

FK 2010 64
ENHANCED ALGORITHM FOR ENERGY-SAVING MECHANISM AND FRAME RESPONSE TIME REDUCTION IN IEEE 802.16E WIMAX

By

ALAA M. BAKER

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

December 2010
Dedicated to

My dearest Parents (Mahmood Mohammed and Zina), who are simply the best parents of all time

My Brother (Ziad M. Baker)

For their extraordinary love, their endless care and encouragement

Thank you
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

ENHANCED ALGORITHM FOR ENERGY SAVING MECHANISM AND FRAME RESPONSE TIME REDUCTION IN IEEE 802.16e WIMAX

By

ALAA M. BAKER

December 2010

Chair: Associate Professor Nor Kamariah Noordin, PhD

Faculty: Engineering

Mobile Units have many constraints for reliable communication in today’s mobile environments. Unlike wired networks, mobility induces moving around with no power source connected. Hence, an efficient utilization of battery power is important for wireless users. Traffic plays a major role for energy consumption because of the unpredictable incoming flow nature.

Many studies have been conducted as an effort to conserve energy and schedule wireless nodes to sleep periodically. The Institute of Electrical and Electronic Engineers (IEEE) standard 802.16, more popularly known as Worldwide Interoperability for Micro Wave Access or WiMAX had finalized the standard IEEE 802.16e for mobile devices. The standard defines a sleep mode operation for conserving power to support the battery life for the mobile broadband wireless access devices. The system saves energy when it goes through a sleeping period. However it
faces some delay in the packet arrival response time. The relationship between the energy consumption and the delay is studied to ensure best performance for mobile devices. This relationship has been analyzed by using a mathematical model and a real time scalable model. A new scheduling method is proposed to adjust the sleeping cycle periods by adding a small increase to the next sleeping cycle comparing with the previous cycle. The simulated results had been obtained after adjusting the length of the first sleeping cycle period (T_{min}) and adjusting the length of the last sleeping cycle period (T_{max}). Adjusting T_{min} results in reducing 54% time needed for every frame to get response especially at lower traffic region. At high traffic region, the reduction of 21.5% is obtained in energy consumption for each sleep mode operation. Adjusting T_{max} results in reducing 53% of frame response time. Further simulation conducted, showed that the proposed algorithm performs better than the traditional algorithm in reducing the end-to-end delay, and maintains a small reduction in the energy consumption and increases the throughput at the subscriber station. Therefore, the proposed idea confirms a faster frame response time along with lower energy consumption.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

KAEDAH BERKESAN (ALGORITHM) YANG TELAH DIUBAHSUAI BAGI MEKANISMA PENJIMATAN TENAGA DAN PENGURANGAN RANGKA MASA RESPONS DALAM IEEE 802.16e WIMAX

Oleh

ALAA M. BAKER

Disember 2010

Pengerusi: Profesor Madya Nor Kamariah Noordin, PhD

Fakulti: Kejuruteraan

Dalam dunia komunikasi, terdapat banyak sekatan yang didapati pada sistem komunikasi teknologi bergerak masakini.

Berbeza dengan jaringan yang berwayar, sistem teknologi bergerak memudahkan capaian tanpa menggunakan tenaga. Oleh itu, adalah penting bagi pengguna sistem komunikasi bergerak tanpa wayar menggunakan kuasa bateri yang lebih berkesan.

Trafik memainkan peranan utama bagi penggunaan tenaga kerana aliran masuk pengguna yang tidak dijangka.

Banyak kajian telah dikendalikan dalam usaha menjimatkan tenaga dan menjadualkan node tanpa wayar supaya berehat secara berperingkat. Institut Jurutera
Elektrik dan Elektronik (IEEE) 802.16, lebih dikenali dengan Worldwide Interoperability for Micro Wave Access atau WiMAX telah menyiapkan standard IEEE802.16e bagi sistem komunikasi teknologi bergerak.

Di bawah standard ini, kuasa dapat dijimatkan melalui operasi mode rehat (sleep mode operation) untuk mengukuhkan tempoh tamat bateri bagi alat akses jalur lebar bergerak.

Sistem ini menjimatkan tenaga semasa ia melalui proses rehat. Bagaimanapun, ia menghadapi sedikit kelewatan dari segi masa respons di peringkat permulaan (arrival response time). Kajian mengenai hubungan di antara penggunaan tenaga dengan kelewatan itu dibuat untuk mempastikan prestasi yang terbaik bagi alat komunikasi bergerak.

Hubungan ini telahpun dianalisiskan dengan menggunakan satu model mathematik dan model tepat masa yang boleh diukur. Satu kaedah penjadualan dicadang bagi menyesuaikan tempoh kitaran rehat dengan menambah sedikit kenaikan kepada kitaran rehat yang baru dengan yang sebelumnya. Hasil simulasi telah diperolehi selepas menyesuaikan tempoh kitaran rehat pertama (T_{min}) dengan tempoh kitaran rehat terakhir (T_{max}).

Dengan menyesuaikan T_{min} rangka masa respons (frame response time) dapat dikurangkan sebanyak 54% terutama di kawasan trafik yang lebih rendah. Di kawasan trafik tinggi, pengurangan tenaga dikurangkan 21.5 peratus bagi setiap
operasi mode rehat. Dengan menyesuaikan T_{max} rangka masa respons dapat dikurangkan sebanyak 53 peratus.

Simulasi seterusnya menunjukkan kaedah (algorithm) yang dicadangkan ini menghasilkan prestasi yang lebih baik berbanding kaedah tradisional dalam mengurangkan kelambatan setiap hari, dan mengekalkan sedikit penurunan pada penggunaan tenaga serta meningkatkan pengeluaran di stesen pengguna.

Oleh itu, idea yang dicadangkan mengesahkan rangka masa respons lebih pantas dan penggunaan tenaga yang lebih rendah.
ACKNOWLEDGEMENTS

In the Name of ALLAH, the Most Beneficent, the Most Merciful

Praise and gratitude be to ALLAH, almighty, without whose gracious help it would have been impossible to accomplish this work. This thesis could have not been possible without the guidance and technical insight of Associate Professor Dr. Nor Kamariah Noordin, my thesis chair, for her great guidance, supports and motivations throughout the thesis work. I benefitted a lot from her board knowledge and deep insight. Her constructive criticism and detailed comments have greatly improved my research. She is great mentor for my life as well. I am very thankful to Dr. Nor for giving me the opportunity to work under her guidance. Her invaluable technical assistance, moral support and motivation are the main reasons for timely completion of such a challenging thesis. Her wonderful personality and most of all encouragement during difficult times in my research kept me going. I would like to thank Dr. Sabira Khatun for serving on my committee, and for her inspiring suggestions and help with my thesis work.

I want to thank my research collaborator and all my colleagues in the wireless laboratory, Dr. Michael, Mostafa, Yaqoob, Bassam, Mohammed, Abdullnaser, Aws, Melad, Yassen, Bashar, Ayyoup, Sabah, Sammer and Farhad for the illuminating discussions and invaluable help in the development of this research. Thanks to Ma Shuying for her tremendous support, for taking me up every time I feel down.
Thanks to everyone at the Faculty of Engineering and all those who asked "how is your thesis going?" These memories at the Faculty of Engineering will always be cherished.

I am grateful for the emotional, financial and nutritional support of my family. Without their continuous support and prayers, this work would not have been accomplished. Mum, Zina Abdullah, thank you for directing me in my academic and professional life. I would also like to thank my father, Mahmood B. Mohameed to pursue me to work on my master, but continued to give me words of wisdom when I really needed them. I express my deepest gratitude to my brother Ziad, for providing me with guidance and supporting all my decisions. I am grateful for all the life lessons learned from my grandmothers and for their extensive preying, which are the cornerstones of my success. I know their blessings will always be with me in all my endeavours and I dedicate this success to him. I ask ALLAH to keep my family safe, and support them with good health.
I certify that a Thesis Examination Committee has met on 6 December 2010 to conduct the final examination of Alaa M. Baker on his master of science thesis entitled “Enhanced Algorithm For Energy Saving Mechanism And Frame Response Time Reduction In Ieee 802.16e Wimax” in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P. U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the degree of Master of Science.

Members of the Thesis Examination Committee were as follows:

Borhanuddin bin Mohd Ali, PhD
Professor
Faculty of Engineering
University Putra Malaysia
(Chairman)

Raja Syamsul Azmir bin Raja Abdullah, PhD
Lecturer
Faculty of Engineering
University Putra Malaysia
(Internal Examiner)

Mohd Fadhlee bin A Rasid, PhD
Senior Lecturer
Faculty of Engineering
University Putra Malaysia
(Internal Examiner)

Farhat Anwar, PhD
Associate Professor
Faculty of Engineering
International Islamic University Malaysia
(External Examiner)

SHAMSUDDIN SULAIMAN, Phd
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 24 March 2011
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Nor Kamariah Noordin, PhD
Associate Professor
Faculty of Engineering
University Putra Malaysia
(Chairman)

Sabira Khatun, PhD
Associate Professor
Faculty of Engineering
University Putra Malaysia
(Member)

HASANAH MOHD GHAZALI, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

ALAA M. BAKER
Date: 6 December 2010
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>viii</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>x</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xviii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xix</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

1.1 Motivations | 2 |
1.2 Problem Statement | 3 |
1.3 Research Challenges | 5 |
1.4 Objective | 6 |
1.5 Scope of Research | 7 |
1.6 Study Model | 7 |
1.7 Thesis Organization | 9 |

2 LITERATURE REVIEW

2.1 Mobile Nodes Communication | 10 |
2.2 WiMAX Background | 12 |
2.3 Technical Challenges for WiMAX | 13 |
2.4 WiMAX Standards | 14 |
2.5 WiMAX OSI Layers | 19 |
2.5.1 PHY Layer | 20 |
2.5.2 MAC Layer | 20 |
2.6 Power Saving Mechanism | 22 |
2.7 Related Works | 25 |
2.8 Summary | 43 |
3 METHODOLOGY
3.1 Introduction 45
3.2 Performance Parameters and Definitions 48
 3.2.1 Time needed for every arriving packet to get response 48
 3.2.2 Energy Consumption 49
 3.2.3 End to end delay 49
 3.2.4 Definitions 50
3.3 Main work 51
 3.3.1 C++ simulation 52
 3.3.2 Qualnet v5.0 simulation 53
3.4 System mathematical model 55
3.5 Sleep mode operation in IEEE 802.16e WiMAX 55
 3.5.1 Optimized Equations 59
3.6 Poisson distribution method 62
 3.6.1 Poisson distribution equations 63
3.7 System scalable model 70
3.8 Summary 72

4 RESULTS AND DISCUSSION
4.1 Introduction 74
4.2 Mathematical simulation results 75
 4.2.1 First group results 77
 4.2.2 Second group results 86
4.3 Simulation results 94
 4.3.1 End-to-end delay 96
 4.3.2 Energy consumption within the sleep mode operation 98
 4.3.3 Total charge consumed from the battery 99
 4.3.4 Throughput 100
 4.3.5 Range of performance 101
4.4 Summary 102