

UNIVERSITI PUTRA MALAYSIA

SIMULATED OPTIMIZATION OF RESERVOIR OPERATIONS OF THE ZAYANDEHRUD DAM, IRAN

MINA ZIAEI

FK 2010 49

SIMULATED OPTIMIZATION OF RESERVOIR OPERATIONS OF THE ZAYANDEHRUD DAM, IRAN

August 2010

This work is dedicated to my Mother Mrs. I. Amigh, and my Father Mr. L. Ziaei

Abstract of thesis presented to the Senate of University Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

SIMULATED OPTIMIZATION OF RESERVOIR OPERATIONS OF THE ZAYANDEHRUD DAM, IRAN

By MINA ZIAEI August 2010

Chairman: Professor Lee Teang Shui, PhD

Faculty: Engineering

Due to severe droughts in the Isfahan province of Iran and limited water resources (arid and semi-arid climate), managing optimum operation of these resources is important. The two parts of this study are the use of HEC-ResSim to carry out a simulation phase and the optimal operation phase by using LINGO model for single-objective optimization. The objective function of the optimization model is maximizing the total release for various demands downstream of the dam. The operation of the reservoir-river system should be based on practical guidelines for the storage or release of water to meet the project demands. The rule curve and optimal operation policies of the Zayandehrud dam can be explained by average regulatory output of the dam per month during the period covered (1957-2003).

Another important step in the optimization model is evaluation of reservoir operation policy performance. Evaluation indexes are very applicable to achieve this goal. One of the most important index is the reliability index. The reliability index was considered to compare the dam operation based on the prepared policies (rule curve) with standard operation policies (SOP) and downstream demands. Results indicate that the optimized operation of the Zayandehrud dam will increase the storage of reservoir by 88.9%, increase the times when the reservoir is full by 5.2% and reduce the times when the reservoir is empty by 18.6%. Although, the optimization of the Zayandehrud reservoir operation resulted in a 3.1% reduction of the total supply, it has however realized a 10.8% increase in the reliability index of regulatory water for all the requirements. The result of the simulation analysis shows that the volume of reservoir storage during the 47yr period is 636.1 and 336.8 million cubic meters during optimization and standard operation (non-optimization), respectively. Results indicate that under optimal conditions 33 months (5.9%) and that under standard operating conditions (non-optimal) only 4 months (0.7%) the reservoir would be filled over the period. Also during optimal conditions 76 months (13.5%) and non-optimal conditions 181 months (32.1%) respectively the reservoir would be empty over the period. The results reveal an increase of 88.9% of reservoir storage volume under optimized operation condition.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi Keperluan untuk ijazah Master Sains

PENGOPTIMUMAN TERSELAKU OPERASI TAKUNGAN UNTUK EMPANGAN ZAYANDEHRUD DI IRAN

Oleh

MINA ZIAEI

Ogos 2010

Pengerusi: Prof Lee Teang Shui, PhD

Fakulti: Kejuruteraan

Akibat kemarau di Daerah Isfahan, Iran serta sumber air yang terhad (iklim gersang dan separa-gersang), pengurusan sumber sumber ini secara kadar beroperasi optimum adalah penting. Kajian kedua bahagian ini merangkumi pengunaan HEC-ResSim untuk fasa simulasi dan penggunaan model LINGO untuk pengoptimum objektif-tunggal bagi fasa operasi optimum. Fungsi obkjetif model pengoptimum ialah memaksimumkan jumlah keluaran aliran demi menyelesaikan permintaan dihilir empangan. Operasi sistem empangan-sungai berdasarkan kepada peraturan praktik untuk simpanan atau keluaran air semoga memenuhi keperluan projek. Lengkung aturan dan polisi operasi optimum empangan Zayandehrud boleh diterangkan berdasarkan keluaran peraturan purata empangan bulanan dalam jangkamasa kajian (1957-2003). Satu langkah penting di dalam model pengoptimuman ialah penilaian prestasi polisi operasi empangan. Indeks penilaian sesuai diguna untuk mencapai matlamat tersebut. Satu indeks terpenting ialah indeks kebolehharapan. Indeks ini diguna untuk membandingkan operasi empangan berdasarkan

polisi tersedia (lengkung aturan) dengan polisi operasi piawai (SOP) dan permintaan di hilir. Keputusan menjelaskan bahawa dengan operasi optimum empangan Zayandehrud akan neningkatkan simpanan sebanyak 88.9%, memanjangkan jangkamasa empangan penuh sebanyak 5.2% dan mengurangkan jangkamasa empangan kosong sebanyak 18.6%. Walaupun pengoptimuman operasi empangan Zayandehrud mengurangkan 3.1% jumlah bekalan, akan tetapi indeks kebolehharapan air peraturan untuk semua keperluan neningkat 10.8%. Keputusan analisis simulasi menunjukkan bahawa isipadu simpanan empangan pada jangkamasa 47 tahun jalah 636.1 dan 336.8 juta isipadu meter pada masa operasi optimum dan operasi piawai, masing masing. Hasil kajian menunjukkan bahawa dalam keadaan optimum 33 bulan (5.9%) dan dalam keadaan operasi piawai (takoptimum) hanya 4 bulan (0.7%), empangan diisi-penuh dalam jangkamasa tersebut. Pada keadaan optimum 76 bulan (13.5%) dan keadaan tak-optimum 181 bulan (32.1%) masing masing, empangan adalah kosong dalam jangkamasa berkenaan. Hasil kajian juga menunjukkan kenaikan 88.9% isipadu simpanan empangan dalam keadaan operasi optimum.

I certify that an Examination Committee has met on **30th of August** to conduct the final examination of **Mina Ziaei** on her degree thesis entitled "**Simulated optimization of reservoir operations of the Zayandehrud dam, Iran**" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the student be awarded the (Master degree).

Members of the Examination Committee were as follows:

Mohd Amin Mohd Soom

Professor Engineering Universiti Putra Malaysia (Chairman)

Abdul Halim Ghazali, PhD

Associate Professor Engineering Universiti Putra Malaysia (Internal Examiner)

Badronnisa Yusuf, PhD

Doctor Engineering Universiti Putra Malaysia (Internal Examiner)

Othman Bin A. Karim, PhD

Professor Engineering Universiti Kebangsaan Malaysia Malaysia (External Examiner)

BUJANG KIM HUAT, PhD

Professor and deputy Dean School of Graduate studies Universiti Putra Malaysia

Date:

This thesis was submitted to the Senate of university Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of **Master of Science.** The members of the Supervisory Committee were as follows:

Lee Teang Shui, PhD

Professor Faculty of Engineering Universiti Putra Malaysia (Chairman)

Desa bin Ahmad, PhD

Professor Faculty Engineering Universiti Putra Malaysia (Member)

Huang Yuk Feng, PhD

Lecturer National Hydraulic Research institute of Malaysia (NAHRIM) (Member)

HASANAH MOHD GHAZALI, PhD

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date:

ACKNOWLEDGEMENTS

Praise belongs to God who has been the source of inspiration, strength and confidence throughout my life and especially during the Master program.

I wish to thank my supervisor, Professor Dr. Lee Teang Shui, Department of Biological and Agricultural Engineering, Faculty of Engineering, University Putra Malaysia, advisor, for the outstanding support and encouragement that he has provided. Thanks are also due to my committee members, Prof. Dr. Desa Bin Ahmad, and my external member Dr. Huang Yuk Feng, for their time and constructive criticisms.

I am grateful to a number of people who have assisted me during my research especially my father, who generously devoted much time and effort in discussing the numerical implications of my work.

Finally, my deepest appreciation goes to my mother for her patience and tolerance during my studies.

DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or other institutions.

TABLE OF CONTENTS

DED ABS ABS APP ACF DEC LIST LIST	DICATI TRAC TRAK ROVA NOW CLARA F OF T F OF F	ION T L LEDGMENT TION ABLES IGURES	i ii iv vi viii ix xii xii xiv
LIST	Г OF A	BBREVIATIONS	xvi
CHA	APTER		
1	INTE	RODUCTION	
	$ \begin{array}{c} 1.1 \\ 1.2 \\ 1.3 \\ 1.4 \\ 1.5 \\ 1.6 \\ 1.7 \\ \end{array} $	Hydrosystem Simulation Optimization Background Problem Statements Scope of Work Significance of study	1 2 2 3 4 7 7
2	LIT	ERATURE REVIEW	
	2.1	Introduction	9
	2.2	Optimization Concept	10
	2.3	Optimization Models and Techniques	12
		2.3.1 Linear Programming	15
		2.3.2 Non-Linear Programming	18
	2.4	2.3.3 Dynamic Programming Method	22
	2.4	2 4 1 Beservoir Systems Operation Models	20
	25	Simulation Models	33
	2.3	2.5.1 HEC Software	34
		2.5.2 HEC-ResSim	36
		2.5.3 HEC-PRM (Hydrologic Engineering Center)	41
		Prescriptive Reservoir Model	
	2.6	LINGO Program	45
		2.6.1 Application of LINGO Program	46
	2.7	Data Requirements	47

METHODOLOGY 3

4

	3.1	Case Study	48	
	3.2	Isfahan Dams	49	
	3.3	ZayandehRud Basin and Dam	49	
	3.4	Downstream of ZayandehRud Dam	54	
	3.5	Methodology	55	
	3.6	Optimization Models	56	
		3.6.1 LINGO Software	56	
	3.7	Formulation of the Mathematical Model for the Resources	59	
		Allocation Problem		
		3.7.1 Solving the Problem Using Linear Optimization Method	61	
		3.7.2 Boundary Conditions of the Problem	62	
	3.8	Determination of the Reservoir Operation Policy Base on	64	
	2.0	the Results from the Optimization Model	C 1	
	3.9	Evaluating Reservoir Operation Policy Performance	64	
	3.10	Simulation of the Reservoir Operation Policy by HEC-	66	
		2 10 1 The Stone of Doing Simulation by HEC BesSim	60	
		3.10.1 The Steps of Doing Simulation by HEC-Ressim	09 70	
		7avandehBud Baservoir	70	
	3.11	The Overall Process of Optimization and Simulation	71	
4	DECI			
4	KESU	JL IS AND DISCUSSIONS	74	
	4.1	Input Data	74	
	4.2	Reservoir Operation	15	
	4.5	Elevation-Storage-Area Curve	70	
	4.4	Optimization Analysis	/0 	
	4.5	Simulating Reservoir Operation Policy	86	
	4.0	A 6.1 Results of Simulation of the Storage Operation	87	
		Policies	07	
5	SUM	IMARY, CONCLUSIONS AND RECOMMENDATIONS		
		5.1 Summary	105	
		5.2 Conclusions	105	
		5.3 Recommendations	107	
RE	FERENC	CES	109	
API	APPENDICES			
BIC	BIODATA OF STUDENT			