UNIVERSITI PUTRA MALAYSIA

SIMULATED OPTIMIZATION OF RESERVOIR OPERATIONS OF THE ZAYANDEHRUD DAM, IRAN

MINA ZIAEI

FK 2010 49
SIMULATED OPTIMIZATION OF RESERVOIR OPERATIONS OF THE
ZAYANDEHRUD DAM, IRAN

By
MINA ZIAEI

August 2010
This work is dedicated to my Mother Mrs. I. Amigh, and my Father Mr. L. Ziaei
SIMULATED OPTIMIZATION OF RESERVOIR OPERATIONS OF THE
ZAYANDEHRUD DAM, IRAN

By
MINA ZIAEI

August 2010

Chairman: Professor Lee Teang Shui, PhD

Faculty: Engineering

Due to severe droughts in the Isfahan province of Iran and limited water resources (arid and semi-arid climate), managing optimum operation of these resources is important. The two parts of this study are the use of HEC-ResSim to carry out a simulation phase and the optimal operation phase by using LINGO model for single-objective optimization. The objective function of the optimization model is maximizing the total release for various demands downstream of the dam. The operation of the reservoir-river system should be based on practical guidelines for the storage or release of water to meet the project demands. The rule curve and optimal operation policies of the Zayandehrud dam can be explained by average regulatory output of the dam per month during the period covered (1957-2003).
Another important step in the optimization model is evaluation of reservoir operation policy performance. Evaluation indexes are very applicable to achieve this goal. One of the most important index is the reliability index. The reliability index was considered to compare the dam operation based on the prepared policies (rule curve) with standard operation policies (SOP) and downstream demands. Results indicate that the optimized operation of the Zayandehrud dam will increase the storage of reservoir by 88.9%, increase the times when the reservoir is full by 5.2% and reduce the times when the reservoir is empty by 18.6%. Although, the optimization of the Zayandehrud reservoir operation resulted in a 3.1% reduction of the total supply, it has however realized a 10.8% increase in the reliability index of regulatory water for all the requirements. The result of the simulation analysis shows that the volume of reservoir storage during the 47-yr period is 636.1 and 336.8 million cubic meters during optimization and standard operation (non-optimization), respectively. Results indicate that under optimal conditions 33 months (5.9%) and that under standard operating conditions (non-optimal) only 4 months (0.7%) the reservoir would be filled over the period. Also during optimal conditions 76 months (13.5%) and non-optimal conditions 181 months (32.1%) respectively the reservoir would be empty over the period. The results reveal an increase of 88.9% of reservoir storage volume under optimized operation condition.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi Keperluan untuk ijazah Master Sains

PENGOPTIMUMAN TERSELAKU OPERASI TAKUNGAN UNTUK E

EMPANGAN ZAYANDEHRUD DI IRAN

Oleh

MINA ZIAEI

Ogos 2010

Pengerusi: Prof Lee Teang Shui, PhD

Fakulti: Kejuruteraan

polisi tersedia (lengkung aturan) dengan polisi operasi piawai (SOP) dan permintaan di hilir. Keputusan menjelaskan bahawa dengan operasi optimum empangan Zayandehrud akan neningkatkan simpanan sebanyak 88.9%, memanjangkan jangkamasa empangan penuh sebanyak 5.2% dan mengurangkan jangkamasa empangan kosong sebanyak 18.6%. Walaupun pengoptimuman operasi empangan Zayandehrud mengurangkan 3.1% jumlah bekalan, akan tetapi indeks keboleharapan air peraturan untuk semua keperluan meningkat 10.8%. Keputusan analisis simulasi menunjukkan bahawa isipadu simpanan empangan pada jangkamasa 47 tahun ialah 636.1 dan 336.8 juta isipadu meter pada masa operasi optimum dan operasi piawai, masing masing. Hasil kajian menunjukkan bahawa dalam keadaan optimum 33 bulan (5.9%) dan dalam keadaan operasi piawai (tak-optimum) hanya 4 bulan (0.7%), empangan diisi-penuh dalam jangkamasa tersebut. Pada keadaan optimum 76 bulan (13.5%) dan keadaan tak-optimum 181 bulan (32.1%) masing masing, empangan adalah kosong dalam jangkamasa berkenaan. Hasil kajian juga menunjukkan kenaikan 88.9% isipadu simpanan empangan dalam keadaan operasi optimum.
I certify that an Examination Committee has met on 30th of August to conduct the final examination of Mina Ziaei on her degree thesis entitled “Simulated optimization of reservoir operations of the Zayandehrud dam, Iran” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the student be awarded the (Master degree).

Members of the Examination Committee were as follows:

Mohd Amin Mohd Soom
Professor
Engineering
Universiti Putra Malaysia
(Chairman)

Abdul Halim Ghazali, PhD
Associate Professor
Engineering
Universiti Putra Malaysia
(Internal Examiner)

Badronnisa Yusuf, PhD
Doctor
Engineering
Universiti Putra Malaysia
(Internal Examiner)

Othman Bin A. Karim, PhD
Professor
Engineering
Universiti Kebangsaan Malaysia
Malaysia
(External Examiner)

BUJANG KIM HUAT, PhD
Professor and deputy Dean
School of Graduate studies
Universiti Putra Malaysia

Date:
This thesis was submitted to the Senate of university Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Lee Teang Shui, PhD
Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Desa bin Ahmad, PhD
Professor
Faculty Engineering
Universiti Putra Malaysia
(Member)

Huang Yuk Feng, PhD
Lecturer
National Hydraulic Research institute of Malaysia (NAHRIM)
(Member)

HASANAH MOHD GHAZALI, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
ACKNOWLEDGEMENTS

Praise belongs to God who has been the source of inspiration, strength and confidence throughout my life and especially during the Master program.

I wish to thank my supervisor, Professor Dr. Lee Teang Shui, Department of Biological and Agricultural Engineering, Faculty of Engineering, University Putra Malaysia, advisor, for the outstanding support and encouragement that he has provided. Thanks are also due to my committee members, Prof. Dr. Desa Bin Ahmad, and my external member Dr. Huang Yuk Feng, for their time and constructive criticisms.

I am grateful to a number of people who have assisted me during my research especially my father, who generously devoted much time and effort in discussing the numerical implications of my work.

Finally, my deepest appreciation goes to my mother for her patience and tolerance during my studies.
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or other institutions.

Mina Ziae

Date: 30 August 2010
TABLE OF CONTENTS

DEDICATION
ABSTRACT
ABSTRAK
APPROVAL
ACKNOWLEDGMENT
DECLARATION
LIST OF TABLES
LIST OF FIGURES
LIST OF ABBREVIATIONS

CHAPTER

1 INTRODUCTION
 1.1 Hydrosystem
 1.2 Simulation
 1.3 Optimization
 1.4 Background
 1.5 Problem Statements
 1.6 Scope of Work
 1.7 Significance of study

2 LITERATURE REVIEW
 2.1 Introduction
 2.2 Optimization Concept
 2.3 Optimization Models and Techniques
 2.3.1 Linear Programming
 2.3.2 Non-Linear Programming
 2.3.3 Dynamic Programming Method
 2.4 Reservoir Systems
 2.4.1 Reservoir Systems Operation Models
 2.5 Simulation Models
 2.5.1 HEC Software
 2.5.2 HEC-ResSim
 2.5.3 HEC-PRM (Hydrologic Engineering Center)
 Prescriptive Reservoir Model
 2.6 LINGO Program
 2.6.1 Application of LINGO Program
 2.7 Data Requirements

x
3 METHODOLOGY
3.1 Case Study 48
3.2 Isfahan Dams 49
3.3 ZayandehRud Basin and Dam 49
3.4 Downstream of ZayandehRud Dam 54
3.5 Methodology 55
3.6 Optimization Models 56
 3.6.1 LINGO Software 56
3.7 Formulation of the Mathematical Model for the Resources Allocation Problem
 3.7.1 Solving the Problem Using Linear Optimization Method 61
3.8 Determination of the Reservoir Operation Policy Base on the Results from the Optimization Model 64
3.9 Evaluating Reservoir Operation Policy Performance 64
3.10 Simulation of the Reservoir Operation Policy by HEC-ResSim Model
 3.10.1 The Steps of Doing Simulation by HEC-ResSim 69
 3.10.2 Data Requirement for Simulation in ZayandehRud Reservoir 70
3.11 The Overall Process of Optimization and Simulation 71

4 RESULTS AND DISCUSSIONS
4.1 Input Data 74
4.2 Reservoir Operation 75
4.3 Elevation-Storage-Area Curve 76
4.4 Finding Outlier Data 78
4.5 Optimization Analysis 81
4.6 Simulating Reservoir Operation Policy 86
 4.6.1 Results of Simulation of the Storage Operation Policies 87

5 SUMMARY, CONCLUSIONS AND RECOMMENDATIONS
5.1 Summary 105
5.2 Conclusions 105
5.3 Recommendations 107

REFERENCES 109
APPENDICES 115
BIODATA OF STUDENT 221