UNIVERSITI PUTRA MALAYSIA

ELECTRO-OSMOTIC PROPERTIES AND EFFECTS OF pH ON GEOTECHNICAL BEHAVIOUR OF PEAT

AFSHIN ASADI

FK 2010 20
ELECTRO-OSMOTIC PROPERTIES AND EFFECTS OF pH ON GEOTECHNICAL BEHAVIOUR OF PEAT

By
AFSHIN ASADI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

April 2010
To my beloved wife Shadi Yavari and my daughter Ava Asadi
Peat is an accumulation of partially decayed vegetation matter with high non-crystalline colloid which is formed in wetland systems. Using electro-osmotic techniques to improve peat entails developing a fundamental understanding of the electro-osmotic environment in peat which is an excellent context for this study. Electro-osmotic properties, electro-osmotic experiments, and the physicochemical effects on the peat due to electro-osmotic treatment were investigated. In addition, chemico-geomechanical sensitivities of peat to pH gradients were examined. The electro-osmotic properties of peat in the presence of different cations were also modeled by means of artificial neural networks.

Soil samples were collected to evaluate the correlations between electro-osmotic parameters. Electro-osmotic apparatus were designed and developed specific to provide conditions to get a good quality of undisturbed non-homogeneous samples. Electro-osmotic experiments were then conducted on the peat. To determine the
physicochemical effects on the peats due to electro-osmotic treatment, different undisturbed specimens were treated for short and long periods of time in the presence of peat water. Since the foremost effective mechanism during electro-osmotic treatment was electrolysis reactions at the electrodes, chemico-geomechanical sensitivities of peat to pH gradients were also investigated in the process. A backpropogation neural network was applied to model the electro-osmotic properties.

The results of the study showed that the zeta potential, specific surface area, water contents, and liquid limit increased as the organic content increased. The negative charge in peat was highly pH-dependent and surface charge dropped to zero at pH 2.3 to 3.5. The zeta potential of the peat was affected by the type of cations, the pH, the valance of cations, the concentration of the cations, degree of humification, and hydrated radius of the cations. The greater degree of humification resulted in the higher zeta potential. The trivalent cations showed a higher power in decreasing the zeta potential. The lower hydrated radius when the cations had the same valance showed a higher power in the decrease of the zeta potential. The higher concentration of the cations resulted in the lower zeta potential. The peat with the higher water content, temperature, and porosity showed the lower resistivity, while the higher organic content showed a contrary effect. The resistivity decreased as the degree of humification increased.

The study revealed that the greater degree of humification resulted in higher electro-osmotic permeability. The electro-osmotic treatment strengthened the peat at the
anode. The undrained shear strength and liquid limit of the peat were improved and the cation exchange capacity and zeta potential decreased as the pH decreased. The undrained shear strength and liquid limit decreased and the cation exchange capacity and zeta potential increased in the vicinity of the cathode.

Chemico-geomechanical effects of peat water pH gradients on peat revealed that in both fibrous and amorphous peat, the permeability and coefficient of volume compressibility increased and optimum moisture content decreased because of the acidic conditions, while the basic conditions had a contrary effect. The peats did not show any positive surface charge even at very low pH. The sensitivity of the amorphous peat to the electro-osmotic environment was higher than the sensitivity of the fibrous peat to the pH gradients. Electro-osmotic environment resulted in the charge neutralization, and increased the potential ability of the peats for a mechanical densification. The artificial neural networks results were found to be close to test values.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai mementahi keperluan untuk ijazah Kedoktoran

SIFAT-SIFAT ELEKTRO-OSMOTIK DAN KESAN pH TERHADAP KELAKUAN GEOTEKNIKAL KEATAS GAMBUT

By

AFSHIN ASADI

April 2010

Pengerusi : Profesor Dr. Bujang Kim Huat
Fakulti : Kejuruteraan

fizikal-kimia terhadap gambut desebabkan oleh rawatan elektro-osmotik, spesimen tidak terganggu yang berbeza dirawat dalam tempoh masa yang singkat dan panjang dengan kehadiran air gambut. Desebabkan mekanisma yang paling efektif semasa rawatan elektro-osmotik ialah tindakbalas-tindakbalas elektrolisis pada elektrod-elektrod, kesensitifan geomekanikal gambut terhadap kecerunan pH juga disiasat dalam proses tersebut. Rangkaian neural Backpropogation telah digunakan untuk memodelkan sifat-sifat elektroosmotik.

ACKNOWLEDGEMENTS

My utmost gratitude goes to Allah. I would like to express a special thanks to my academic advisor Professor Bujang Kim Huat. It was a well rewarding experience to have been under his supervision. I am also grateful to my supervisory committee members, Associate Professor Thamer A. Mohamed, Professor M. M. Hanafi, and Associate Professor Nader Shariatmadari. The financial support from the Research Management Center (RMC) of the UPM (Grant No. 91152) is gratefully appreciated. I would like to express my sincere thanks to my examination committee members, Associate Professor Abdul Halim Ghazali, Professor Mohd Raihan Taha (former student of late Professor Yalcin B. Acar), Professor Mohd Amin Mohd Soom, and Professor Shenbaga Rajaratnam Kaniraj Jeyachandran.

On a personal note, I warmly thank my uncle Dr. Mahmoud Asadi for his generous contributions to my research in the difficult times.

Last but not the least, I owe my loving thanks to my wife Shadi Yavari, my daughter Ava Asadi, my parents Hassan and Khotan Asadi, and my sister Noshin Asadi for their support, understanding, and encouragement.

Thank you MALAYSIA.
I certify that a Thesis Examination Committee has met on 29 April 2010 to conduct the final examination of Afshin Asadi on his thesis entitled “Electro-osmotic Properties and Effects of pH on Geotechnical Behaviour of Peat” in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Associate Professor Abdul Halim Ghazali
Faculty of Engineering, Universiti Putra Malaysia
(Chairman)

Professor Mohd Amin Mohd Soom
Faculty of Engineering, Universiti Putra Malaysia
(Internal Examiner)

Professor Mohd Raihan Taha
Faculty of Engineering, Universiti Kebangsaan Malaysia
(External Examiner)

Professor Kaniraj Shenbaga
Faculty of Engineering, Curtin University of Technology Australia
(External Examiner)

BUJANG KIM HUAT, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Bujang Kim Huat, PhD
Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Thamer Ahmed Mohamed, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Member)

Mohamed Musa Hanafi, PhD
Professor
Institute of Tropical Agriculture
Universiti Putra Malaysia
(Member)

Nader Shariatmadari, PhD
Associate Professor
Faculty of Engineering
Iran University of Science and Technology
(Member)

HASANAH MOHD. GHAZALI, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 10 June 2010
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, or is not concurrently, submitted for any other degree at University Putra Malaysia or at any other institution.

AFSHIN ASADI
Date: 13 May 2010
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>ix</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>x</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xviii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxii</td>
</tr>
</tbody>
</table>

CHAPTER

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.1 Motivations</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.2 Research Objectives</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1.3 Scope of Research</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1.4 Thesis Organization</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>LITERATURE REVIEW</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>2.1 Introduction</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>2.2 Soil Colloids</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>2.2.1 Permanent Charge Surface</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>2.2.2 Variable Charge Surface</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>2.2.3 Soil Electronegativity</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>2.2.4 Contribution of Organic Matter to Soil Charge</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>2.2.5 Influence of Environmental Factors on Surface Charge</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>2.3 Peat</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>2.3.1 Definition of Peat</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>2.3.2 Humification of Peat</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>2.3.3 Classification of Peat</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>2.3.4 Development of Peat Land</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>2.3.5 Engineering Properties of Peat</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>2.4 Electrokinetic Phenomena in Soils</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>2.4.1 Electro-osmotic Phenomenon</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>2.4.2 Electro-osmosis as a Means of Soil Improvement</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>2.4.3 Electro-osmotic Cell</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>2.5 Electro-osmosis in Peat</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>2.6 Conclusions</td>
<td>43</td>
</tr>
</tbody>
</table>
3 ROLE OF ORGANIC MATTER ON ELECTRO-OSMOTIC PROPERTIES OF PEAT

3.1 Introduction 44
3.2 Materials and Methods 45
 3.2.1 Organic Content 46
 3.2.2 Water Content 47
 3.2.3 Liquid Limit 48
 3.2.4 Specific Surface Area 49
 3.2.5 Mineralogy of Peat Clay Fraction 49
 3.2.6 Electrokinetics Properties 51
 3.2.7 Cation Exchange Capacity 53
3.3 Results and Discussion 56
 3.3.1 Organic Soil-Water Interaction 56
 3.3.2 Zeta Potential and pH 60
 3.3.3 Zeta Potential and Degree of Humification 63
3.4 Conclusions 66

4 RESISTIVITY AND ZETA POTENTIAL IN THE PRESENCE OF CATIONS

4.1 Introduction 67
4.2 Materials and Methods 71
 4.2.1 Materials 71
 4.2.2 Laboratory Resistivity Cell 71
 4.2.3 Physicochemical Properties 72
 4.2.4 Procedures of Resistivity Test 72
 4.2.5 Procedures of Zeta Potential Test in Presence of Cations 73
 4.2.6 ANNs Models of Resistivity and Zeta Potential 73
4.3 Results and Discussion 78
 4.3.1 Physicochemical Properties 76
 4.3.2 Resistivity of the Samples 77
 4.3.3 Zeta Potential of the Peats 81
 4.3.4 Modeling of Resistivity and Zeta Potential 91
4.4 Conclusions 94

5 ELECTRO-OSMOTIC EXPERIMENTS ON PEAT

5.1 Introduction 96
5.2 Materials and Methods 98
 5.2.1 Materials 98
 5.2.2 Physicochemical Properties of Peats and Pore Fluids 98
 5.2.3 Laboratory Electro-osmosis Apparatus 100
 5.2.4 Electro-osmotic Test Procedures 102
5.3 Results and Discussion 103
 5.3.1 Physicochemical Properties of Natural Peats 103
5.3.2 Physicochemical Properties of Pore Water of Peats 105
5.3.3 Electrical Potential, Current, and Resistivity 106
5.3.4 Anolyte and Catholyte pH 109
5.3.5 Electro-osmosis Flow 111
5.4 Conclusions 115

6 PHYSICO-CHEMICAL SENSITIVITIES OF PEAT TO ELECTRO-OSMOTIC ENVIRONMENT 117
6.1 Introduction 117
6.2 Materials and Methods 118
6.2.1 Materials 118
6.2.2 Physicochemical Properties 118
6.2.3 Experimental Setup 119
6.2.4 Electrokinetic Test Procedures 119
6.3 Results and Discussion 120
6.3.1 Physicochemical Properties before EK Treatment 120
6.3.2 EK Treatment Effects on Physicochemical Attributes of the Peats 122
6.4 Conclusions 134

7 CHEMICO-GEOMECHANICAL EFFECTS OF pH ON PEAT 136
7.1 Introduction 136
7.2 Materials and Methods 137
7.2.1 Materials 137
7.2.2 Acid/Base Treatment Procedures 137
7.3 Results and Discussion 140
7.3.1 Physicochemical Properties before Acid/Base Treatment 140
7.3.2 Chemico-geomechanical Sensitivities of Peat to pH gradients 140
7.4 Conclusions 151

8 CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH 153
8.1 Summary 153
8.2 Conclusions 154
8.3 Recommendations 158

REFERENCES 160
APPENDICE A: XRD 169
APPENDICE B: ANNs 170
APPENDICE C: CERTIFICATE OF AWARD 181
BIODATA OF STUDENT 182
LIST OF PUBLICATIONS 183