DEVELOPMENT OF NANOCRYSTALLINE THICK FILM GAS SENSORS

MOHAMMAD HADI NEZHAD SHAHROKH ABADI

FK 2010 17
DEVELOPMENT OF NANOCRYSTALLINE
THICK FILM GAS SENSORS

By

MOHAMMAD HADI NEZHAD SHAHROKH ABADI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Doctor of Philosophy

December 2010
DEDICATION

To My Beloved: Mina, Zahra & Reza
My Mother Masoomeh & My Mother-in-Law Mansooreh
who their loves never end to me
and to the
Memories of My Father Ali, & My Father-in-Law Gholamreza
God Bless Them
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Doctor of Philosophy

DEVELOPMENT OF NANOCRYSTALLINE THICK FILM GAS SENSORS

By

MOHAMMAD HADI NEZHAD SHAHROKH ABADI

December 2010

Chairman: Mohd Nizar b Hamidon, PhD
Faculty: Engineering

In the last three decades along with growing industries and development of cities, many pollutants have entered into the environment cycle. Some resultant of these contaminations can be felt as air pollution. Now, many cities across the world have been equipped with the databases to collect and analyze the information related to air quality and to give the index of air pollution known as API. In order to record and monitor the pollution, some of those databases use advanced equipment and instrument which are very expensive and need regular overhaul and maintenance. However, some databases are equipped with simpler gas detectors, so-called solid state gas sensors.

Nowadays, many types of solid state gas sensors, employed different techniques of fabrication, are released in the market. One of those techniques is known as Thick Film Technology which has proved to be very promising and low cost option to fabricate gas sensors for gas analyzers, but some problems still are
associated to their efficiency such as deficient of selectivity, influence of humidity, cross sensitivity, response time, and power consumption. The main goal of this doctoral thesis is to develop a nanocrystalline metal oxide thick film gas sensor using print screen technology having fast response time and highly sensitive to air contaminants.

The fabricated gas sensor consists of a heater, an electrode, and a sensitive film onto an alumina substrate, which can stand up to high firing temperature during fabrication and operation. To fabricate the sensitive paste, tin dioxide (SnO$_2$) and tungsten trioxide (WO$_3$) were used as the base powders. Meanwhile, platinum, silver, and yttria (Y$_2$O$_3$) were used as additives and dopings. Finally, types of alcohol (ethyl alcohol, isopropanol, and methanol), hydrocarbon (xylene, isobutane), ketones (acetone), mixture of inorganic gases (exhaust fumes), and wood smoke were applied to the sensors for measurement.

Fabrication of the sensitive paste has brought the development of a novel vehicle binder in the organic phase of the paste. The novel binder fulfills the screen printing criteria in which can be prepared very fast, having less additional material with at least one month shelf life. Crystallite size of sensitive powder of the sensors was measured using XRD analysis, showing sizes less than 30 nm and 20 nm for metal oxide phase and metal additives, respectively. Low dependency of WO$_3$ sensors doped with Y$_2$O$_3$ to humidity was observed. Sensitivity of fabricated sensors in the presence of applied gases was compared to some commercial sensors and higher sensitivity was observed. The 0.9WO$_3$0.1Y$_2$O$_3$ sensor (WY-90) shows to be very sensitive to organic solvents.
compared with sensitivity of TGS2620 (Alcohol Sensor). The 0.98SnO\textsubscript{2}0.02Pt sensor (SnPt-980) shows to be more sensitive with faster response time to organic solvents and truck exhaust gas than the commercial sensors of TGS2602 (Air Quality Taguchi Sensor), TGS3870 (Methane and Carbon Monoxide), and TGS4160 (Carbon Dioxide). It shows a response time as low as 15 seconds in the presence of 500 ppm exhaust gas compared to 28 seconds response time of TGS2602.

Since the sensor is equipped with a heater element, it can operate at different working temperatures and produce different sensing signal in the presence of different gases or solvents, lead to have a selective gas sensor. Also, the approach of screen printing fabrication eases the fabrication of an array of four individual gas sensors with a very thin metal oxide and catalyst layer, using pulse laser ablation deposition (PLAD) technique. The results show that the response time of the array is significantly decreased to as low as 5 seconds in the presence of 200 ppm acetone.
Dengan perkembangan industri dan pembangunan bandar semanjak tiga dekad kebelakangan ini banyak bahan pencemar telah memasuki kitaran alam sekitar. Ada di antara bahan pencemar ini yang boleh dirasai kehadirannya sebagai pencemaran udara. Banyak bandar di seluruh dunia kini telah dilengkapi dengan pangkalan data untuk mengumpul dan menganalisis informasi berkaitan dengan tahap kualiti udara dan berfungsi untuk memberikan indeks pencemaran udara (API) untuk merekod dan memantau pencemaran tersebut. Sesetengah pangkalan data menggunakan peralatan dan instrumentasi yang maju tetapi berkcos tinggi serta memerlukan penyelenggaraan yang kerap. Tetapi terdapat juga pangkalan data yang dilengkapi dengan penderia gas yang lebih ringkas iaitu penderia gas berkeadaan pejal.

Kini, terdapat banyak jenis penderia gas berkeadaan pejal yang menggunakan pelbagai teknik pembuatan yang terdapat di pasaran. Salah satu teknik ini
dikenali sebagai Teknologi Selaput Tebal dimana ianya terbukti sebagai antara pilihan yang meyakinkan serta berkost rendah untuk fabrikasi penderia gas. Namunpun begitu ia masih mempunyai masalah berkaitan dengan kecekapan seperti kekurangan di dalam pemilihan, pengaruh kelembapan, kepekaan rentas, masa tindakbalas dan penggunaan tenaga. Objektif utama tesis doktorat ini ialah untuk membangunkan “penderia gas selaput tebal nanokristal logam teroksida” dengan menggunakan teknologi pencetak skrin yang mempunyai masa tindakbalas yang pantas dan sangat peka terhadap unsur pencemar udara.

Penderia gas yang telah dibina mengandungi gelung pemanas dan filem sensitif di atas alumina dimana ia boleh bertahan pada pemanasan suhu tinggi ketika proses pembuatan dan semasa beroperasi. Untuk pembuatan bahan sebatian sensitif penderia gas, tin dioksida (SnO₂) dan tungsten trioksida (WO₃) digunakan sebagai bahan asas. Manakala, platinum, perak, dan yttria (Y₂O₃) digunakan sebagai bahan penambah dan pengdopan. Akhir sekali, jenis-jenis alkohol (ethyl alcohol, isopropanol, dan methanol), hydrocarbon (xylene, isobutane), ketones (acetone), campuran gas bukan oraganik (gas ekzos), dan asap daripada kayu telah digunakan terhadap penderia sebagai pengukuran.

Pembuatan bahan sebatian sensitif telah membawa kepada pembentukan pembantu pengikat terkini di dalam fasa sebatian organik tersebut. Pembentukan pembantu pengikat terkini yang memenuhi kriteria pencetak skrin dimana ia boleh disediakan dengan pantas, serta kurang penggunaan bahan tambahan dan boleh digunakan dalam tempoh sebulan. Saiz hablur halus sensitif daripada penderia telah diukur dengan menggunakan analisis XRD, dimana ia
menunjukkan saiz kurang daripada 30 nm dan 20 nm untuk fasa oksida logam serta bahan tambahan logam. Kurangnya kebergantungan penderia WO₃ (yang didopkan dengan Y₂O₃) terhadap kelembapan telah diperhatikan. Kadarn kejitan gas penderia dengan kehadiran gas telah dibandingkan dengan beberapa penderia komersil yang sangat peka terhadap kehadiran gas. Penderia 0.9WO₃:0.1Y₂O₃ (WY-90) menunjukkan kadar kepekaan yang tinggi terhadap bahan pelarut organik berbanding dengan penderia TGS2620 (Penderia Alkohol). Penderia 0.98SnO₂:0.02Pt (SnPt-980) menunjukkan kadar kepekaan yang tinggi dengan masa tindakbalas yang lebih singkat terhadap bahan pelarut organik dan gas daripada ekzos kenderaan berbanding penderia komersil TGS2602 (Air Quality Taguchi Sensor), TGS3870 (Methane and Carbon Monoxide), dan TGS4160 (Carbon Dioxide). Ia menunjukkan masa tindakbalas masa serendah 15 saat dengan kehadiran 500 ppm gas ekzos berbanding dengan 28 saat respon masa oleh TGS2602.

ACKNOWLEDGEMENTS

I would like to express the deepest appreciation to my committee chair, Dr. Mohd Nizar Hamidon, for his excellent guidance, caring, patience, and providing me with an excellent atmosphere for doing research. He continually and convincingly conveyed a spirit of adventure in regard to research and fellowship. I would like to thank Professor Abdul Halim Shaari, who has the attitude and the substance of a genius, let me experience the research of nanomaterials and gave me such a great opportunity to work in his lab in the science faculty. Without his guidance and persistent help this dissertation would not have been possible. I would like to thank my committee members Dr. Norhafizah Abdullah and Dr. Norhisham Masiron for guiding my research for the past three years and helping me to develop my background.

It is a pleasure to give especial thanks to Mr. Rahman Wagiran who believed me and made this thesis possible and helped me with the research material. He provided a great research grant supported by Ministry of Science, Technology and Innovation of Malaysia (MOSTI). Without his corporation and supporting I could not have done my research. Thank you very much Mr. Rahman.

I thank the University of Putra Malaysia for giving me the chance of being PhD student. Thanks a lot to all of you guys. Also I would like to thank Mrs. Norita Hanapiah for technical assistance in the thick–film laboratory and Mr. Ismail Ghani for macroscopic measurements. Lastly, I offer my regards and blessings to all of those who supported me in any respect during the completion of this doctoral research.
APPROVAL SHEET

I certify that a Thesis Examination Committee has met on 16 December 2010 to conduct the final examination of Mohammad Hadi Nezhad Shahrokh Abadi on his thesis entitled “Development of Nanocrystalline Thick Film Gas Sensors” in accordance with the Universities and University College Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the candidate be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Fakhrul-Razi b Ahmadun, PhD
Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Roslina bt Mohd Sidek, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

Alyani binti Ismail, PhD
Lecturer
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

Neil White, PhD
Professor
University of Southampton
United Kingdom
(External Examiner)

[Signature]

BUJANG BIN KIM HUAT, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 22 February 2011
This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee are as follows:

Mohd Nizar B Hamidon, PhD
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Abdul Halim B Shaari, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Member)

Norhafizah bt. Hj. Abdullah, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Member)

Norhisam Misron, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Member)

HASANAH MOHD GHAZALI, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia
Date:
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledge. I also declare that it has not been previously and is not concurrently submitted for any other degree at Universiti Putra Malaysia or other institutions.

MOHAMMAD HADI SHAHROKH ABADI

Date: 16 December 2010
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td></td>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td></td>
<td>ACKNOWLEDGEMENTS</td>
<td>ix</td>
</tr>
<tr>
<td></td>
<td>APPROVAL</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>DECLARATION</td>
<td>xii</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>xvi</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>xvii</td>
</tr>
<tr>
<td></td>
<td>ABBREVIATIONS</td>
<td>xxiii</td>
</tr>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>Gas Sensors Demands and Motivation</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Aim and Objective</td>
<td>4</td>
</tr>
<tr>
<td>1.3</td>
<td>Thesis Flow</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>GAS SENSORS DEVELOPMENTS</td>
<td>8</td>
</tr>
<tr>
<td>2.1</td>
<td>The Modern Gas Monitoring</td>
<td>9</td>
</tr>
<tr>
<td>2.2</td>
<td>Analytical Instruments and Monitoring Systems</td>
<td>10</td>
</tr>
<tr>
<td>2.3</td>
<td>Types of Gas Sensor</td>
<td>11</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Infrared Gas Sensors</td>
<td>12</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Photo-Ionization Gas Detectors</td>
<td>13</td>
</tr>
<tr>
<td>2.3.3</td>
<td>Solid State Gas</td>
<td>13</td>
</tr>
<tr>
<td>2.3.4</td>
<td>Catalytic Bead Gas</td>
<td>14</td>
</tr>
<tr>
<td>2.3.5</td>
<td>Electrochemical Gas Sensors</td>
<td>16</td>
</tr>
<tr>
<td>2.3.6</td>
<td>Optical Gas Sensors</td>
<td>17</td>
</tr>
<tr>
<td>2.3.7</td>
<td>Piezoelectric Gas Sensors</td>
<td>19</td>
</tr>
<tr>
<td>2.3.8</td>
<td>Field Effect Gas Sensors</td>
<td>20</td>
</tr>
<tr>
<td>2.3.9</td>
<td>Microelectromechanical Gas Sensors</td>
<td>22</td>
</tr>
<tr>
<td>2.3.10</td>
<td>Semiconductor Gas</td>
<td>24</td>
</tr>
<tr>
<td>2.4</td>
<td>Thick Film Resistive Gas Sensors</td>
<td>25</td>
</tr>
<tr>
<td>2.5</td>
<td>Operation Principle of TFRs</td>
<td>27</td>
</tr>
<tr>
<td>2.5.1</td>
<td>Bulk Conductivity Changes in TFR Gas Sensors</td>
<td>29</td>
</tr>
<tr>
<td>2.5.2</td>
<td>Surface Conductivity Changes in TFR Gas Sensors</td>
<td>32</td>
</tr>
<tr>
<td>2.6</td>
<td>Materials for Active Layer of TFR Gas Sensors</td>
<td>35</td>
</tr>
<tr>
<td>2.6.1</td>
<td>SnO₂-Based Gas Sensors</td>
<td>37</td>
</tr>
<tr>
<td>2.6.2</td>
<td>WO₃-Based Gas Sensors</td>
<td>40</td>
</tr>
<tr>
<td>2.7</td>
<td>Sensor Characteristics</td>
<td>43</td>
</tr>
<tr>
<td>2.7.1</td>
<td>Sensitivity of Gas Sensors</td>
<td>45</td>
</tr>
<tr>
<td>2.7.2</td>
<td>Selectivity of Gas Sensors</td>
<td>45</td>
</tr>
<tr>
<td>2.7.3</td>
<td>Stability of Gas Sensors</td>
<td>46</td>
</tr>
<tr>
<td>2.7.4</td>
<td>Response Time of Gas Sensors</td>
<td>47</td>
</tr>
<tr>
<td>2.7.5</td>
<td>Operating Temperature of Gas Sensors</td>
<td>48</td>
</tr>
<tr>
<td>2.8</td>
<td>Summary</td>
<td>48</td>
</tr>
</tbody>
</table>
3 STATE OF THE ART OF THICK FILM TECHNOLOGY 49
3.1 History of Thick Film Technique 49
3.2 Comparison of Fabrication Techniques 50
 3.2.1 Thick Film Technology 51
 3.2.2 Thin Film Technology 52
 3.2.3 Polymer or Soft Substrates 54
3.3 Fundamental of Thick Film Process 58
3.4 Design Aids 57
3.5 Screens 58
 3.5.1 Mesh Materials 61
 3.5.2 Screen Fabrication 62
3.6 Screen Printing 64
3.7 Thermal Curing Process 68
3.8 Thick Film Gas Sensor Fabrication 71
 3.8.1 Alumina Substrate for TFR Gas Sensor 72
 3.8.2 Gas Sensor Heater 73
 3.8.3 Design of Electrodes 76
 3.8.4 Fabrication of Thick Film Pastes 78
3.9 Summary 81

4 FABRICATION OF NANOCRYSTALLINE THICK FILM GAS SENSOR 82
4.1 Alumina Based-Substrate Thick Film Gas Sensor 82
4.2 Fabrication of Electric Parts 84
4.3 Fabrication of Organic Vehicle 86
 4.3.1 Preparation of Conventional Organic Vehicle 87
 4.3.2 Preparation of Novel Organic Vehicle Based-on Linseed Oil 88
4.4 Preparation of Binder 90
4.5 Preparation of Sensitive Layer 90
 4.5.1 Sensitive Powder 91
 4.5.2 Fabrication of Sensitive Paste 93
 4.5.3 Thermal Treatment of Sensitive Film 94
4.6 Film Structure Monitoring 96
4.7 Bonding and Testing of the Sensor 97
4.8 Summary 100

5 CHARACTERIZATION OF NANOCRYSTALLINE THICK FILM GAS SENSORS 101
5.1 Characterization of Vehicle Binder 102
 5.1.1 Organic Vehicle Based-on Ethyl Cellulose 102
 5.1.2 Novel Organic Vehicle Based-on Linseed Oil 106
5.2 Characterization of Heater Element 109
 5.2.1 Resistance of the Heater 109
 5.2.2 Temperature Coefficient Resistance and Power Consumption of the Heater 111
 5.2.3 Thermal Response Time and Stability of Heater 114
5.3 Structural Analysis of Powders 115
 5.3.1 X-Ray Diffraction (XRD) Analysis 115
 5.3.2 Transmission Electron Microscopy (TEM) Studies 124
5.4 Microstructural Analyses of Sensitive Films 127
5.4.1 Scanning Electron Microscopy (SEM) Studies 127
5.4.2 Energy-Dispersive X-Ray Spectroscopy (EDX) Studies 130
5.5 Gas Sensitivity Performance of the Sensors 133
5.5.1 WO3-Based Sensors 135
5.5.2 SnO2-Based Sensors 149
5.5.3 Sensitivity of WO3 and SnO2 Sensors to Humidity 163
5.6 Summary 164

6 Thick Film Laser Ablated Gas Sensor Array 166
6.1 Array Gas Sensor 166
6.2 Pulse Laser Ablation Deposition (PLAD) 169
6.3 Fabrication of Laser Ablated Array Gas Sensor 171
6.4 Characterization of Array Gas Sensor 173
6.4.1 X-Ray Diffraction (XRD) Analysis of SnO2 Pellet 174
6.4.2 Surface Analysis of Deposited Film 174
6.4.3 Gas Sensing Performance of Array 177
6.5 Summary 180

7 CONCLUSIONS AND FUTURE WORKS 181
7.1 Conclusion 181
7.1.1 Utilizing thick film technique to fabricate a gas sensor 182
7.1.2 Novel organic vehicle based-on linseed stand oil 182
7.1.3 Highly sensitive 0.9WO30.1Y2O3 sensor to Isobutane with low cross sensitivity to humidity 183
7.1.4 Highly sensitive nanocrystalline 0.99SnO20.01Pt thick film gas sensor for air quality applications 184
7.1.5 A fast response gas sensor array based-on thick film and pulse laser ablation deposition techniques 185
7.2 Future Works 186

REFERENCES 187
APPENDICES 206
BIODATA 222
LIST OF PUBLICATIONS AND AWARDS 223