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ABSTRACT

It is now evident that the estimation of logistic regression parameters, using Maximum Likelihood 
Estimator (MLE), suffers a huge drawback in the presence of outliers.  An alternative approach is to 
use robust logistic regression estimators, such as Mallows type leverage dependent weights estimator 
(MALLOWS), Conditionally Unbiased Bounded Influence Function estimator (CUBIF), Bianco and 
Yohai estimator (BY), and Weighted Bianco and Yohai estimator (WBY).  This paper investigates the 
robustness of the preceding robust estimators by using real data sets and Monte Carlo simulations.  The 
results indicate that the MLE behaves poorly in the presence of outliers.  On the other hand, the WBY 
estimator is more efficient than the other existing robust estimators.  Thus, it is suggested that the WBY 
estimator be employed when outliers are present in the data to obtain a reliable estimate.

Keywords: Maximum Likelihood Estimator, Robust Estimators, Outliers, Goodness of fit, Monte 
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with predictor variables X(s) that may be 
either numerical, categorical or both.  From 
its original acceptance in epidemiology, 
the application of this model is now widely 
used in many research fields.  In practice, 
the Maximum Likelihood Estimator (MLE) 
is used to estimate the coefficients, standard 
errors and to compute the goodness of fit 
test.  The MLE is known as the most efficient 
estimator with good optimality properties 
for estimating the parameters in the logistic 

INTRODUCTION

Logistic regression model is used for 
prediction of the probability of an occurrence 
Y = 0 or a non occurrence Y = 1 of an event 

Article history:
Received: 17 January 2011
Accepted: 15 April 2011

Email addresses: 
habshahmidi@gmail.com (Habshah, M.),  
syaibabalqish@gmail.com (Syaiba, B. A.)
*Corresponding Author



Habshah, M. and Syaiba, B. A.

314 Pertanika J. Sci. & Technol. 20 (2): 313 - 325 (2012)

regression model.  Unfortunately, the MLE is not robust toward outliers.  It is now evident that 
the MLE estimates are known to be severely sensitive to outliers (Croux et al., 2002; Victoria-
Feser, 2002; Croux & Haesbroeck, 2003; Imon & Hadi, 2008; Nurunnabi et al., 2009; Syaiba & 
Habshah, 2010; Sarkar et al., 2011).  Even a single outlier is good enough to cause the estimates 
to suffer, and thus, resulting in a completely erroneous estimation.  In a logistic regression 
problem, outlying observations which are corresponding to excessively large fitted values and 
highly influential to the model fit are treated as outliers (Hao, 1992; Croux & Haesbroeck, 
2003).  Nurunnabi et al. (2009) defined outliers as influential observations that need not to be 
outlined in the sense of having large fitted values.  As an alternative, robust estimators which 
are much less affected by outliers are considered (Künsch et al., 1989; Carroll & Pederson, 
1993; Bianco & Yohai, 1996; Croux & Haesbroeck, 2003).

In the next section, a brief background of the classical MLE, robust estimators and goodness 
of fit tests is reviewed.  This is followed by an evaluation of the performance of MLE and 
robust estimators in the real examples and the Monte Carlo simulation study (see sub-section 
3).  Finally, the conclusion is given in sub-section 4.

MATERIALS AND METHODS

Maximum Likelihood Estimator

Consider a multiple logistic regression model:

Y Xr f= +^ h  (1)

where, with X X X Xp p0 1 1 2 2 fh b b b b b= + + + + = .  Here, Y is an n × 1 vector of response.  Let 
yi = 0 if the ith unit does not have the characteristic and yi = 1 if the ith unit does possess that 
characteristic.  X is an n × k matrix of explanatory variables with k = p + 1.  , , ,T

p0 1 2 fb b b b b= ^ h  
is the vector of the regression parameters and ε is an n × 1 vector of the unobserved random 
errors.  The quantity πi is known as probability or fitted value for the ith covariate.  The model 
given in Eq.(2) satisfies 0 ≤ πi ≤ 1.  The fitted values in logistic regression model are calculated 
for each covariate pattern which is dependent on the estimated probability for the covariate 
pattern, denoted as yi ir= t .  Thus, the ith residual is defined as:

yi if r= -t t  i = 1, 2, ..., n (3)

A logit transformation of the logistic regression model which is linear in its parameter is defined 
in terms of Xr = ^ h as follows:

( ) logg X X1 r
r

b=
-

=a k  (4)

Here, “log” shall designate the base e logarithm.  The conditional distribution of response 
variable follows a Bernoulli distribution with a probability given by the conditional mean, 
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π(X).  Since Yi = 0 for i = 1, 2, ..., n are assumed to be independent with n corresponding to the 
random variables of (Y1, Y2, ..., Yn), the joint probability density function is written as:

, , ,g Y Y Y f Y1 2 n i i

i

n

1

f =
=

^ ^h h%

1i
Y

i

i

n
Y

1

1i ir r= -
=

-^ ^h h%  (5)

Then, the MLE is obtained by maximizing the logarithm of the likelihood function produces, 
as follows:

, , ,log log logg Y Y Y Y 1 1n i
i
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By differenting Eq. (6) with respect to β0, produces Y X 0i i

i

n

1

r- =
=

^ h6 @/  and  X Y X 0i i i

i

n

1

r- =
=

^ h6 @/  

for β1, β2, ..., βp.  The iterative estimates of β (s) are then obtained as follows:

X WX X W X W ek T T k1 1 1b b= ++ - -t t^ ^^ h hh

X WX X ek T T1
b= +

-t ^^ hh  (7)

where W is a diagonal matrix with an element of 1i ir r-^ h, e Y r= - t  and k is number of 
iterations.

It is important to point out that when a complete separation is found in the data, the 
parameters of the logistic regression model cannot be estimated by the MLE.  The complete 
separation of data (means no overlapping cases) is when the X values, that correspond to 
Y = 1, exceed all of the X values that correspond to Y = 0 (Albert & Anderson, 1984; Santner 
& Duffy, 1986).

Recently, there are many robust estimators available in the literature due to the sensitivity 
of the MLE in the presence of outliers.  In this section, several selected robust estimators are 
utilized to compare their performances with the classical MLE in the presence of outliers.  
These robust estimators are briefly discussed in the subsequent sections.

The Mallows Type Leverage Dependent Weights Estimator (MALLOWS)

Künsch et al. (1989) introduced the Mallow-type estimator by minimizing the weighted log-
likelihood function where the weights are dependent on covariates.  Carrol and Pederson (1993) 
investigated more on the Mallow-type estimator and proposed to turn the MLE into an estimate 
with bounded influence by down-weighting the outliers in the X-space.  The MALLOWS 
estimator was obtained by minimizing the log-likelihood on a particular weight function.

log logw y y1 1i i i

i

n

i i

1

r b r b+ - -
=

^^ ^ ^^hh h hh6 @/  (8)
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where w W h xi n i= ^^ hh.  W is a non-increasing function such that W u u^ h  is bounded which is 

dependent on a parameter c 02 , and W u c
u u c1 2

2

#-=^ c ^h m h.  W is computed by Robust 

Mahalanobis Distance (RMD) based on the robust estimation of the centre and scatter matrix 
of the covariates.

The Conditionally Unbiased Bounded Influence Function estimator (CUBIF)

The CUBIF estimator minimizes a measure of efficiency based on the asymptotic covariance 
matrix under the model subject to a bound on a measure of infinitesimal sensitivity that is 

similar to the gross error sensitivity (Künsch et al., 1989).  It is a consistent M-estimator in the 

form of , ,y x 0i i

i

n

1

} b =
=

^ h/   such that , ,E y x x 0i} b =^a h k .  The optimal function of }  is written 

as follows:

, , , , , , , ,
,

y x B W y x b B y g x c x h x B
b xT T} b b b b= - -^ ^ ^

^
ch h h

h
m' 1  (9)

where b is bounded on the measure of infinitesimal sensitivity, B is a dispersion matrix, and 
,h x B x B xT 1 1

2= -^ ^h h  is a leverage measure.  The function ,
,

c x b
h x B

Tb
^c hm

 is a corrected bias 
with corrected residual as shown below:

, , , , ,
,

r y x b B y g x c x h x B
b

i
T Tb b b= - -^ ^

^
ch h

h
m (10)

The weights are in the form of , , , , , , ,W y x b B W r y x h x Bbb b=^ ^ ^^h h hh , where Wb  is the Huber 

weight given by ,minW x
x
b1b =^ h ' 1.  The function W downweights the observation with a large 

corrected residual and a large leverage making the M-estimator to have a bounded influence.
The MALLOWS and the CUBIF estimators are available in the Robust Packages of SPLUS 

and R under the command of glmRob.

The Bianco and Yohai Estimator (BY)

Pregibon (1981) proposed robust M-estimates to replace the total deviance function based on 
minimizing the weighted total deviance.

,M d yi i

i

n
2

1

b t r b=
=

^ ^^^h h hh/  (11)

where ρ(u) is an increasing Huber loss function.  Meanwhile, deviance residuals measure 
the discrepancies between the probabilities fitted using the regression coefficients β and the 
observed values.  Later, Bianco and Yohai (1996) found that this estimator does not downweight 
the high leverage points and is not consistent as well.  They improved this estimator by 
minimizing it, as follows:

,M d y qi i i
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where ρ(u) is a bounded, differentiable and non-decreasing function, which is defined by:
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*  (13)

with k is a positive number.  The researchers defined q u v u v u1= + -^ ^ ^h h h  with 
logv u t dt2 2

u

0

}= -^ ^h h#  and T} t= .

The Weighted Bianco and Yohai Estimator (WBY)

Croux and Haesbroeck (2003) noticed that when working with Huber loss function, ρ(u) 
which was suggested by Bianco and Yohai (1996) previously, occurred frequently that the BY 
estimator did not exist even for uncontaminated data.  Thus, Croux and Haesbroeck (2003) 
accomplished the BY estimator and proposed an extra weights to downweight the high leverage 
points, ,exp maxu u cc

CH} = -^ ^ah hk.  The WBY estimator minimizes:

w x d yd y E xi i i i

i

n

i i i i
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2 b r b} b r b } -- - b

=

^ ^^ ^^ ^^ ^^ah hh hh hh hh k9 C/  (14)

The weight is to be a decreasing function of RMD with distance is computed using the 
Minimum Covariance Determinant (MCD) (Rousseuw & Leroy, 1987) that is taken as:

1w x if
else

RMD
0

, .

i

pi
2

0 975
2# \

=^ ^h h'  (15)

The WBY estimator consists a loss-function to guarantee the existence of the BY estimator 
and to provide a stable and fast algorithm to compute the BY estimator.

arcsin 2|.
-  Goodness of Fit Test 

There are several measurements used to test the goodness of fit for logistic regression model.  
Nonetheless, Cox and Wermuth (1992) warned not to use R2 when Y only has two possible 
values; this shows that frequently R2 = 0.1 when good models are used.  Meanwhile, Collett 
(2003) has shown that the deviance, which is dependent on the fitted success probabilities ir , 
can only be used to summarise the goodness of fit test for a group binary data and unreliable 
for binary data or when data are sparse.  The Pearson’s 2|  statistics is the most popular 
alternative instead the deviance.  Both the deviance and this Pearson’s 2|  statistics have the 
same asymptotic 2|  distribution when the fitted model is correct.  Even if Pearson’s 2|  statistics 
can be computed to access the goodness of fit test for logistic regression model in the presence 
of outliers, one cannot solely rely on this statistics.  Kordzakhia et al. (2001) suggested an 
alternative measure by using the chi-square statistics based on the arcsin transformation, 

arc
2| .  Later, this statistic was applied to compute the goodness of fit test and to evaluate the 

performance of robust estimators (Künsch et al., 1989; Croux & Haesbroeck, 2003).  The arc
2|  

are defined as follows:
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The arcsin transformation converts a Bernoulli random variable into one that is nearly 
normal and whose variance is slightly dependent on the parameter ir .  The arcsin is used 
to normalize the data in percentages or proportions whose distribution fits the Bernoulli 
distribution.

RESULTS AND DISCUSSIONS

In this study, the investigation was focused on the usefulness of the robust estimators on several 
well-known real data and simulation study.

The Prostate Cancer Data

First, the Prostate Cancer (PC) data given by Brown (1980) were taken into consideration.  
The data contain the values for two continuous variables, which are an elevated level of acid 
phosphates (AP) in the blood serum and the age of patients (AGE) that would be of value 
so as to predict whether or not PC patients also had lymph node involvement (LNI).  The 
original data consisted of 53 patients and this was modified by adding two more outliers, 
namely, cases 54 (y, x1, x2) = (0, 200, 67) and 55 (y, x1, x2) = (0, 200, 68).  The character plot 
of the PC data is presented in Figure 1 where AGE is plotted against AP and the character 
corresponding to occurrence Y = 1 and non-occurrence Y = 0 is denoted by symbols triangle 
and circle, respectively.

Fig.1: Scatter Plot of AGE vs AP with Outliers (Cases 24, 25, 53, 54, 55) for PC Data

It has been reported by Imon (2006) that the original data on the 53 patients may contain 
three outliers (cases 24, 25 and 53).  Nonetheless, five outliers (see Fig. 1) were omitted from 
55 observations to perform uncontaminated data.

The Neuralgia Data 

Next, other data given by Piergorsch (1992) were considered.  The data contain the values 
for two continuous variables, namely, the age of patients in completed years (AGE) and the 
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pre-treatment duration of symptoms in month (DUR).  There were 18 patients involved in this 
study and the outcome was whether the patients experienced any pain relief after the treatment.  
The character plot of the Neuralgia data is presented (see Fig.2) where DUR is plotted against 
AGE and the character corresponding to occurrence Y = 1 and non-occurrence Y = 0 is denoted 
by the triangle and circle, respectively.

Fig. 2: Scatter Plot of DUR vs AGE with Outliers (Cases 2, 6, 8, 11) for Neuralgia Data

It is crucial to highlight that no identification of outliers for the Neuralgia data can be 
found in the literature.  From the scatter plot (see Fig. 2), it pinpoints cases 2, 6, 8 and 11, 
as the outlying points.  Therefore, the four suspected outliers should be removed to perform 
uncontaminated data.

The Erythrocyte Sedimentation Rate Data 

The final data in the current study were the Erythrocyte Sedimentation Rate (ESR) data.  In 
this case, the main objective was to see whether the levels of two plasma proteins (namely, 
Fibrinogen and γ.Globulin) in the blood plasma would be the factor increasing the ESR for 
healthy individuals.  The study was carried out by the Institute of Medical Research, in Kuala 
Lumpur, Malaysia, involving 32 patients and the original data were collected by Collett and 
Jemain (1985).  The responses of zero signify a healthy individual while the responses of 
unity refer to an unhealthy individual.  Here, the continuous variables are (FIB and γ.GLO) 
versus the binary response of ESR.  The character plot of the ESR data is presented in Fig.3 
where γ.GLO is plotted against FIB and the character corresponding to occurrence Y = 1 and 
non-occurrence Y = 0 is denoted by the triangle and circle, respectively.

Syaiba and Habshah (2010) identified two outliers (namely, cases 13 and 29) in X-space 
for the original ESR data.  As illustrated in Fig 3, it was observed that cases 14 and 15 are 
influential observations.  Therefore, deleting cases 14 and 15 would create non-overlapping 
cases.  In order to perform uncontaminated data, one more overlapping case was added by 
modifying case 13 with (y, x1, x2) = (3.06, 37).  From the uncontaminated data, the ESR data 
were contaminated where the occurrences (Y = 1) and non-occurrences (Y = 0) were replaced 
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Fig.3: Scatter Plot of γ.GLO vs FIB  with Outliers (Cases 13, 14, 15 and 29) for ESR Data

with each other for cases 14 and 15, and this might only leave one out of the three overlapping 
cases for the ESR data.

Monte Carlo Simulation Study

A simulation study was conducted to further assess the performance of the MLE and robust 
estimators.  The evaluations focused on the severity of the outliers and also the number of 
observations by adding the outliers to the uncontaminated data.  Following the work by 
Croux and Haesbroeck (2003), three different types of data were considered, and these are 
uncontaminated (Type 1), 5% moderate contaminated (Type 2), and 5% extreme contaminated 
(Type 3).  The explanatory variables for the uncontaminated data (Type 1) were generated 
according to a standard normal distribution, x1 ~ N(0,1) and x2 ~ N(0,1), with four different 
numbers of observations, n = (100, 200, 300, 400).  The choice of a larger sample size was to 
ensure the existence of the overlapping cases in each replication.  As pointed out by Victoria-
Feser (2002), small data may lead to unidentifiable parameter estimates for no overlapping 
cases even without contamination.  According to Victoria-Feser (2002), in practice, the number 
of observations with n = 50 is considered to be small.  Thus, setting the true parameters as 

, , . , ,0 5 1 1T T
0 1 2b b b b= = -^ ^h h  and the responses are defined as the following model equations:

if
ify

x x
x x

0 0
1 0

i

i

i

0 1 1 2 2

0 1 1 2 2

1

$

b b b f

b b b f
=

+ + +

+ + +
'  (17)

where the error terms were generated according to a logistic distribution, ,0 1i +f K^ h.  The 
explanatory variables for the contaminated data were generated according to the standard 
normal distributions, ,z N 0 11 + ^ h and ,z N 0 12 + ^ h.  In addition, the percentage of contamination 
denoted as s was also considered, as such that s = (5%) with magnitude of outlying shift 
distance in X-space for Type 2 and Type 3 taken as δ = 5 and δ = 10 respectively.  The new x 
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values are defined as x z*
1 1 d= +  and x z*

2 2 d= -  and the responses are defined as they are in 
the following model equations:
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The performance of the estimators of MLE, CUBIF, MALLOWS, BY and WBY was 
evaluated based on the summary measures combining the individual estimated coefficients 
over M = 1000 replications.  Therefore, BIAS and Root Mean Squared Error (RMSE) measures 
are computed as follows:

BIAS M
1

i

k
i
t

i

M

1

b b= -
=

t^ h/  and RMSE M
1

i

k
i
t

i

M

1

2

b b= -
=

t^ h/

for k = 1, 2, ..., M and i = 1, 2, ..., p, where :  indicates the Euclidean norm.

RESULTS AND DISCUSSION

A “good” estimator is the one that has parameter estimates fairly close to the MLE estimates 
of the uncontaminated data.  The second criterion is based on the goodness of fit test for 
the estimator which has the smallest value of arc

2| .  Nevertheless, the complete tables of 
estimated coefficients, standard errors, and goodness of fit test could not be attached for the 
uncontaminated data of each real example due to space limitation in this paper.  In general, 
the estimates and arc

2|  values for the MLE, MALLOWS and CUBIF estimators are reasonably 
closer for the uncontaminated data.  It was observed that for uncontaminated PC and Neuralgia 
data, the BY and WBY estimators gave different results for the parameter estimates when the 
outliers were omitted from the data.  On deleting the outliers, the remaining data may have few 
overlapping cases, and thus, leaving the data in situation of quasi-complete separation.  This is 
the reason why the BY and WBY estimators that downweight the outliers have larger estimated 
coefficients and standard errors compared to the MLE estimator.  For the uncontaminated ESR 
data, the estimated coefficients of the BY and WBY estimators are slightly smaller compared 
to the MLE when the number of overlapping cases was increased.

Table 1: Estimated coefficients, standard errors, and the goodness of fit for PC (contaminated data)

MLEuc MLE MALLOWS CUBIF BY WBY

Int. 0b -0.980 11.492 7.141 7.121 -1.912 -4.795
se 0b^ h 13.538 10.940 11.020 11.061 10.822 11.844

AP 1b 3.031 1.141 1.663 1.749 1.112 2.913
se 1b^ h 1.376 0.781 0.817 0.826 0.770 1.030

2b -3.004 -4.145 -3.607 -3.687 -0.817 -1.951

AGE se 2b^ h 2.936 2.735 2.744 2.751 2.653 2.805

arc
2| 100.516 120.013 119.514 119.651 112.512 103.003

MLEuc indicates the results for the uncontaminated PC data
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Table 1 presents the comparison of the five estimators based on parameter estimates, 
standard errors and goodness-of-fit test for the contaminated PC data.  Under the contaminated 
data, 0b  of all estimators is mostly affected by the outliers compared to other coefficients.  
The standard errors were found to be smaller but the arc

2|  values increased compared to 
the uncontaminated data.  The results presented in Table 1 indicate that the MLE is mostly 
influenced by the outliers.  Among the robust estimators, the WBY is the most efficient 
estimator because it produces the lowest arc

2|  value and its estimates are closer to the MLE of 
uncontaminated data.

Table 2: Estimated coefficients, standard errors, and the goodness of fit for Neuralgia (contaminated data)

 MLEuc MLE MALLOWS CUBIF BY WBY

Int. 0b -6.507 14.449 3.109 10.784 14.558 30.921
se 0b^ h 46.406 20.390 19.688 19.794 20.373 25.749

AGE 1b 1.581 -3.312 -0.710 -2.492 -3.411 -7.480
se 1b^ h 10.798 4.836 4.674 4.698 4.836 6.133

2b -0.196 -0.213 -0.200 -0.185 -0.123 0.209

DUR se 2b^ h 0.612 0.542 0.541 0.541 0.544 0.604
arc
2| 33.687 41.680 40.371 40.816 40.750 38.338

MLEuc indicates the results for the uncontaminated Neuralgia data

For the Neuralgia data with outliers (see Fig. 2), it is difficult to judge which estimator is 
the best by inspecting their parameter estimates.  However, it is evident that the WBY is the 
best estimator as it has the smallest arc

2|  value.

Table 3: Estimated coefficients, standard errors, and the goodness of fit for ESR (contaminated data)

 MLEuc MLE MALLOWS CUBIF BY WBY

Int. 0b 12.263 19.882 20.449 20.579 14.231 20.441
se 0b^ h 5.839 9.417 9.809 10.031 7.099 10.381

FIB  1b 1.830 2.597 2.648 3.053 1.791 2.572
se 1b^ h 1.062 1.543 1.611 1.681 1.308 1.877

 2b 0.153 0.278 0.286 0.256 0.189 0.271

γ.GLO se 2b^ h 0.116 0.165 0.170 0.170 0.135 0.178
arc
2| 42.237 27.050 26.628 26.047 27.805 25.724

MLEuc indicates the results for the uncontaminated ESR data

Under the contaminated of the ESR data, β0 and se(β0) of all the estimators are mostly 
affected by the outliers as compared to the other parameters (see Table 3).  The results shown 
in Table 3 also indicate that the MLE is mostly influenced by the outliers.  On modifying the 
contaminated data, there is only one overlapping observation, case 13 remains.  This is the 
reason why the WBY that downweight this observation has large coefficients and standard 
errors.  Even though the WBY has the smallest arc

2|  value, the BY estimator should also be taken 



The Performance of Classical and Robust Logistic Regression Estimators in the Presence of Outliers

323Pertanika J. Sci. & Technol. 20 (2): 313 - 325 (2012)

into consideration.  The results illustrated in Tables 3 signify that the BY is a good estimator 
for the ESR data as its estimates are fairly closer to the MLE for the uncontaminated data.

Tables for the results of the summary measures consist BIAS and RMSE, whereby the 
first row indicates that the computation does not include the intercept term and second row 
indicates the computation including the intercept term.  A “good” estimator is the one that has 
BIAS and RMSE, which are relatively small or closest to zero.

For the uncontaminated data shown in Table 4, the estimators of MLE, MALLOWS, 
CUBIF, BY and WBY behave not too differently.  It can be seen that the BIAS and RMSE 
will reduce when the number of observations is increased.  Under 5% of the intermediate 
contamination (see Table 5), the WBY estimator performs best in term of BIAS and RMSE.  
Meanwhile, the weighting step in the WBY estimator becomes more advantageous in the 
extreme contamination (see Table 6).  However, the MLE estimator behaves very poorly in 

Table 4: BIAS and RMSE of the estimators (Type 1)

n = 100 n = 200 n = 300 n = 400

BIAS RMSE BIAS RMSE BIAS RMSE BIAS RMSE
MLE 0.085 0.451 0.040 0.293 0.025 0.235 0.020 0.203
 0.086 0.522 0.040 0.340 0.026 0.273 0.021 0.238
MALLOWS 0.082 0.451 0.038 0.293 0.023 0.235 0.018 0.203
 0.082 0.522 0.038 0.341 0.024 0.274 0.018 0.238
CUBIF 0.083 0.452 0.040 0.294 0.025 0.235 0.020 0.203
 0.084 0.522 0.041 0.341 0.026 0.274 0.020 0.238
BY 0.094 0.472 0.045 0.304 0.026 0.240 0.022 0.207
 0.095 0.544 0.045 0.352 0.027 0.279 0.023 0.242
WBY 0.096 0.498 0.046 0.315 0.028 0.249 0.022 0.215
 0.097 0.569 0.047 0.363 0.289 0.287 0.023 0.249

Table 5: Bias and RMSE of the estimators (Type 2)

n = 100 n = 200 n = 300 n = 400
BIAS RMSE BIAS RMSE BIAS RMSE BIAS RMSE

MLE 0.684 0.747 0.698 0.723 0.706 0.724 0.704 0.719
 0.741 0.824 0.754 0.792 0.759 0.784 0.758 0.777
MALLOWS  0.615 0.684 0.636 0.668 0.645 0.664 0.645 0.661
 0.666 0.758 0.687 0.728 0.693 0.720 0.694 0.715
CUBIF  0.586 0.660 0.605 0.639 0.613 0.634 0.614 0.630
 0.639 0.736 0.658 0.702 0.663 0.691 0.664 0.686
BY 0.492 0.604 0.512 0.562 0.521 0.553 0.521 0.546
 0.537 0.675 0.556 0.619 0.563 0.603 0.563 0.595
WBY  0.281 0.504 0.319 0.417 0.336 0.401 0.342 0.389
 0.318 0.576 0.354 0.472 0.368 0.446 0.375 0.434
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the contamination data.  There are some losses in the precision (increased RMSE when BIAS 
is small) for the estimator based on weighting step.  The intercept coefficient is more affected 
in the contaminated data, and consequently, the BIAS is larger compared to slope coefficients.

Table 6: BIAS and RMSE of the estimators (Type 3)

n = 100 n = 200 n = 300 n = 400
BIAS RMSE BIAS RMSE BIAS RMSE BIAS RMSE

MLE 1.352 1.369 1.352 1.361 1.354 1.359 1.353 1.357
1.378 1.410 1.379 1.395 1.380 1.390 1.379 1.387

MALLOWS 0.386 0.548 0.475 0.537 0.501 0.541 0.516 0.544
0.398 0.600 0.488 0.569 0.513 0.566 0.529 0.566

CUBIF  0.733 0.784 0.746 0.770 0.753 0.769 0.753 0.764
0.752 0.826 0.765 0.800 0.771 0.794 0.771 0.788

BY 0.852 1.050 0.904 1.029 0.921 1.018 0.916 1.005
0.872 1.090 0.926 1.061 0.943 1.046 0.939 1.032

WBY  0.096 0.492 0.046 0.313 0.028 0.247 0.021 0.213
 0.097 0.563 0.047 0.360 0.029 0.286 0.022 0.248

CONCLUSIONS

The purpose of this analysis was to compare the performance of the MLE and four robust 
estimators under contaminated and uncontaminated data.  The results showed that the MLE 
estimator is severely affected by the presence of outliers.  Among the robust estimators, the 
WBY estimator produced the smallest BIAS and RMSE in the contaminated data and their 
estimates are closer to the MLE for the uncontaminated data, followed by MALLOWS, BY 
and CUBIF.  Therefore, it can be concluded that the WBY estimators perform better compared 
to the MLE estimator and the rest of the robust estimators in the presence of outliers.  The 
results from the real data indicate that the WBY estimator produced the smallest arc

2|  in the 
presence of outliers even though its estimates are slightly difference from the MLE estimator 
in the uncontaminated data due to quasi-complete separation.  To protect against the outliers, 
weighting the covariates is effective.  The weighting step can be seen as a way of the 
uncontaminated in the data before the estimation procedure.
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