UNIVERSITI PUTRA MALAYSIA

GC-MS-BASED METABOLITES PROFILING OF COSMOS CAUDATUS KUNTH LEAVES POSSESSING ALPHA-GLUCOSIDASE INHIBITORY ACTIVITY

NEDA JAVADI

FSTM 2014 8
GC-MS-BASED METABOLITES PROFILING OF *COSMOS CAUDATUS KUNTH* LEAVES POSSESSING ALPHA-GLUCOSIDASE INHIBITORY ACTIVITY

By

NEDA JAVADI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Master of Science

June 2014
COPYRIGHT

All materials contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
I would like to dedicate this project to all those who have helped me to complete it.
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

GC-MS-BASED METABOLITES PROFILING OF COSMOS CAUDATUS KUNTH LEAVES POSSESSING ALPHA-GLUCOSIDASE INHIBITORY ACTIVITY

By

NEDA JAVADI

June 2014

Chairman: Associate Professor Faridah Binti Abas, PhD

Faculty: Food Science and Technology

A large number of plant metabolites have provided as an incomparable chemical source for drug development. Cosmos caudatus, which is known as Ulam raja, is one of the herbal plants used in Malaysia. This plant has been used traditionally to enhance vitality.

The current study focused on the evaluation of the α-glucosidase inhibitory activity of different ethanolic extracts of Cosmos caudatus (C. caudatus). Six series of extracted samples including water, 20%, 40%, 60%, 80%, and 100% ethanol (EtOH) were utilized. The IC₅₀ values for these six series of extracts from 13.7 to 298 µg/mL. The highest α-glucosidase inhibitory activity was obtained from EtOH extract which was comparable to quercetin and more potent than acarbose. In contrast, water extract exhibited the lowest activity. To identify and profile the chemical compositions of the samples, gas chromatography-mass spectrometry (GC-MS) was employed. GC-MS combined with orthogonal partial least-squares analysis (OPLS) was applied to detect antidiabetic activity of C. caudatus. The OPLS showed an obvious and remarkable separation into six clusters representing the six different ethanolic extracts. Therefore, GC-MS was possible to be combined with MVDA for identification of compounds that inhibited α-glucosidase activity. Catechin, α-linolenic acid, α-d-glucopyranoside and vitamin E were identified and indicate the potential antidiabetic activity of this herb.

In the second part of this study, C. caudatus samples were subjected to seven different storage times (0, 2, 4, 6, 8, 10 and 12 h) at room temperature before
extraction and α-glucosidase inhibitory activity were determined for the respective samples. The IC_{50} values ranged from 12.6 to 40.9 µg/mL. α-Glucosidase inhibitory activity for the first group (fresh) was the highest with an IC_{50} value of 12.6 µg/mL, which was better than that of quercetin. After 12 h of storage, the extract exhibited the lowest activity with an IC_{50} value of 40.9 µg/mL, which is still better than that of acarbose. As a model experiment, GC-MS of the extracts obtained from the Ulam raja was correlated with the α-glucosidase inhibition activity with OPLS analysis to determine the antidiabetic compounds. A profound chemical change in the primary and secondary metabolites was observed. In the first group, catechin, α-tocopherol (vitamin E), benzoic acid, cyclohexen-1-carboxylic acid, myo-inositol, stigmasterol, and lycopene were observed. High quantities of primary metabolites including sugars, such as sucrose, α-d-galactopyranose and turanose were observed in samples stored for a long period of time (12 h). This study may provide guidance in the determination of pharmacological mechanism as well as the development of medicinal preparations, nutraceuticals or functional foods from C. caudatus for diabetes and related symptoms.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

METABOLIT PROFIL BERASASKAN GCMS KE ATAS EKSTRAK DAUN COSMOS CAUDATUS KUNTH YANG MEMPUNYAI AKTIVITI PERENCATAN ENZIM ALFA GLUKOSIDASE

Oleh

NEDA JAVADI

Jun 2014

Pengerusi: Professor Madya Faridah Binti Abas, PhD

Fakulti: Sains dan Teknologi Makanan

Sebilangan besar metabolit tumbuhan telah digunakan sebagai sumber kimia yang tiada tandingan untuk pembangunan dadah. Cosmos caudatus, yang dikenali sebagai Ulam raja, adalah salah satu tumbuhan herba yang digunakan di Malaysia. Tumbuhan ini telah digunakan secara tradisional untuk meningkatkan daya hidup.

Kajian ini memberi tumpuan kepada penilaian aktiviti perencatan α-glukosidase, ekstrak etanol yang berbeza dari Cosmos caudatus (C. caudatus). Enam siri sampel diekstrak termasuk air, 20%, 40%, 60%, 80%, dan 100% etanol (EtOH) telah digunakan. Nilai IC$_{50}$ di antara 13.7-298 µg/mL. Nilai tertinggi aktiviti perencatan α-glukosidase telah diperolehi bagi ekstrak EtOH, nilai ini adalah sebaik kuercetin dan lebih baik daripada akarbose. Di samping itu, ekstrak air menunjukkan aktiviti yang paling rendah. Untuk mengenalpasti profil komposisi kimia sampel, gas kromatografi-spektrometri jisim (GC-MS) telah digunakan. GC-MS digabungkan dengan analisis data multivariat, ortogonal separa analisis kuasa dua terkecil (OPLS) telah digunakan untuk mengesan aktiviti antidiabetik extrak C. caudatus. OPLS menunjukkan pemisahan jelas kepada enam kelompok mewakili enam kepekatan etanol yang berbeza. Oleh itu, GC-MS boleh digabungkan dengan analisis data multivariat untuk mengenal pasti sebatian yang menghalang aktiviti α-glukosidase. Di samping itu, katekin, α-linolenik asid, α-D-glukopiranosida dan vitamin E telah dikenal pasti dan menunjukkan aktiviti antidiabetik potensi herba ini.

Dalam bahagian kedua kajian ini, sampel C. caudatus telah di simpan dalam tujuh masa penyimpanan yang berlainan (0, 2, 4, 6, 8, 10 dan 12 jam) pada suhu bilik
sebelum pengekstrakan dan aktiviti perencatan α-glukosidase ditentukan untuk sampel masing-masing. Nilai IC$_{50}$ antara 12.6 to 40.9 μg/mL. Aktiviti perencatan α-glukosidase untuk kumpulan pertama (segar) adalah yang tertinggi dengan nilai IC$_{50}$ 12.6 μg/mL, yang mana lebih baik daripada kuercetin. Selepas 12 jam penyimpanan, ekstrak menunjukkan aktiviti yang paling rendah dengan nilai IC$_{50}$ 40.9 μg/mL, nilai ini masih lebih baik daripada akarbose. Sebagai model eksperimen, ekstrak yang diperoleh daripada Ulam raja yang berkait rapat dengan aktiviti perencatan α-glukosidase telah dianalsis menggunakan GC-MS digabung dengan analisis data multivariat untuk menentukan sebatian antidiabetik. Ortogonal PLS (OPLS) telah digunakan untuk menyiasat perubahan metabolomik. Perubahan kimia dalam metabolit rendah dan menengah diperhatikan. Dalam kumpulan pertama katekin, α-tokoferol (vitamin E), asid benzoik, myo-inositol, asid siklohexen-1-karboksilik, stigmasterol dan likopena telah dikenalpasti. Kuantiti yang tinggi metabolit utama termasuk gula, seperti sukrosa, α-galaktopiranosa dan turanosa diperhatikan dalam sampel yang disimpan untuk tempoh masa yang panjang. Kajian ini boleh memberi panduan dalam penentuan mekanisme farmakologi dan juga pembangunan persediaan perubatan, nutraceutikal atau makanan berfungsi untuk kencing manis dan gejala yang berkaitan.
ACKNOWLEDGEMENTS

My first and foremost appreciation is dedicated to God for giving me the strength to complete this study. I also would like to extend the token of gratitude to those with whom this thesis might not have come to final.

I would like to express my sincere appreciation to Associate Professor Dr. Faridah Binti Abas, my supervisor and the respectable supervisory committee members; Associate Professor Dr. Alfi Khatib, Professor Dr. Azizah Abdul Hamid and Dr. Sanimah Simoh. Their guidance and encouragement have been a source of inspiration to me throughout completion of my study. I am truly thankful to my supervisor Associate Professor Dr. Faridah Binti Abas for her continuous support and constructive suggestions. I wish to thank the technicians and all the staff from Institute Bioscience (IBS) and Malaysian Agricultural Research and Development Institute (MARDI) for their kind cooperation.

I wish to express my deep gratitude to my friends for unfailing support and encouragement. A very special gratitude goes to my parents for their countless blessing and everlasting love.
I certify that a Thesis Examination Committee has met on 23 June 2014 to conduct the final examination of Neda Javadi on her thesis entitled “GC-MS-based metabolites profiling of *Cosmos Caudatus Kunth* leaves possessing alpha-glucosidase inhibitory activity” in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Yaya Rukayadi, PhD
Associate Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Chairperson)

Intan Safinar Ismail, PhD
Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Internal Examiner)

Amin bin Ismail, PhD
Professor
Faculty of Medicine & Health Sciences
Universiti Putra Malaysia
(Internal Examiner)

Irwandi Jaswir, PhD
Professor
Biotechnology Engineering Department
Universiti Islam Antarabangsa Malaysia
Malaysia
(External Examiner)

NORITAH OMAR, PhD
Associate Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 19 September 2014
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Faridah Binti Abas, PhD
Associate Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Chairperson)

Azizah Abdul Hamid, PhD
Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Member)

Alfi Khatib, PhD
Associate Professor
Kulliyyah of Pharmacy
International Islamic University Malaysia
(Member)

Sanimah Simoh, PhD
Senior Lecturer
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 9 October 2014

vii
DECLARATION

Declaration by graduate student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: ___________________ Date: ___________________

Name and Matric No.: ___
Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: ___________________________ Signature: ___________________________
Name of Chairman of Member of
Supervisory Supervisory
Committee: __________________________
Signature: __________________________
Name of Member of
Member of Member of
Supervisory Supervisory
Committee: __________________________
Signature: __________________________
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xv</td>
</tr>
</tbody>
</table>

CHAPTER

1 **INTRODUCTION**
 1.1 Research background
 1.2 Problem statement
 1.3 Research objectives

2 **LITERATURE REVIEW**
 2.1 Introduction to diabetes
 2.2 Treatment of diabetes
 2.3 Anti-diabetic medicinal plants
 2.4 *Cosmos caudatus (C. caudatus)*
 2.4.1 Phytochemical investigation on *Cosmos caudatus*
 2.5 α-Glucosidase
 2.5.1 α-Glucosidase inhibitor from plants
 2.6 Effect of storage on the fresh herb material
 2.7 Metabolomics
 2.7.1 Application of metabolomics
 2.7.2 Analytical methods for metabolomics
 2.7.3 GC-MS based metabolomics
 2.7.4 Data handling tools for metabolomics

3 **METHODOLOGY**
 3.1 Chemicals and reagents
 3.2 Instrumentation
 3.3 Plant material
 3.4 Preparation of *C. caudatus* for extraction
 3.5 α-Glucosidase inhibitory activity
 3.6 Sample derivatization for GS-MS analysis
3.7 GC-MS analysis 24
3.8 XCMS 25
3.9 Statistical analysis 26

4 RESULTS AND DISCUSSION 27
4.1 Effect of extraction solvent on the α-glucosidase inhibitory activity of C. caudatus 27
 4.1.1 The extraction yield of different extracts 27
 4.1.2 α-Glucosidase inhibitory activity of different extracts of C. caudatus 27
 4.1.3 GS-MS based metabolomics analysis of different extracts of C. caudatus 28
 4.1.4 Identification of metabolite responsible for α-glucosidase inhibitory activity 31
 4.1.5 Conclusion 34
4.2 Effect of different storage time on α-glucosidase inhibitory activity of C. caudatus 35
 4.2.1 α-glucosidase inhibitory activity of C. caudatus stored at different times before extraction 35
 4.2.2 GS-MS based metabolomics of C. caudatus stored at different times before extraction 37
 4.2.3 Identification of metabolites from different stored times of C. caudatus samples 39
 4.2.4 Conclusion 42

5 CONCLUSIONS 43

REFERENCES 45
APPENDICES 56
BIODATA OF STUDENT 77
LIST OF PUBLICATIONS 78