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ABSTRACT
Motivation: Prediction of the tertiary structure of a protein
from its amino acid sequence is one of the most important
problems in molecular biology. The successful prediction
of solvent accessibility will be very helpful to achieve
this goal. In the present work, we have implemented
a server, NETASA for predicting solvent accessibility of
amino acids using our newly optimized neural network
algorithm. Several new features in the neural network
architecture and training method have been introduced,
and the network learns faster to provide accuracy values,
which are comparable or better than other methods of ASA
prediction.
Results: Prediction in two and three state classification
systems with several thresholds are provided. Our predic-
tion method achieved the accuracy level upto 90% for train-
ing and 88% for test data sets. Three state prediction re-
sults provide a maximum 65% accuracy for training and
63% for the test data. Applicability of neural networks for
ASA prediction has been confirmed with a larger data set
and wider range of state thresholds. Salient differences be-
tween a linear and exponential network for ASA prediction
have been analysed.
Availability: Online predictions are freely available at:
http://www.netasa.org. Linux ix86 binaries of the program
written for this work may be obtained by email from the
corresponding author.
Contact: shandar@jamia.net

INTRODUCTION
The accuracy of predicting the complete three dimen-
sional structure of a protein is limited with the existing
computational methods (Moult et al., 1999). Secondary
structure and solvent accessibility are, therefore subjects
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of interest in the field of structure prediction (Chandonia
and Karplus, 1999). Neural networks have emerged to
be a method of distinct choice for accurate prediction of
these one dimensional properties of proteins (Qian and
Senjowsky, 1988; Holbrook et al., 1990; Rost and Sander,
1994). In this work, we propose an improved neural net-
work method to predict solvent accessibility or accessible
surface area (ASA) of amino acid residues in proteins.
The algorithm has been implemented for an online predic-
tion, using the server NETASA (http://www.netasa.org).
The prediction results are found to be better than other
methods in the literature.

MATERIALS AND METHODS
Network simulation
A feed forward neural network, consisting of an input,
an output and a hidden layer has been designed for ASA
training. The input layer successively reads binary inputs
from an amino acid sequence database, and consists of
17 units of 21 bit binary vectors, when the prediction is
being made for the central (9th) residue. Each of these
21 bit vectors represents the amino acid at the location
being encoded. While coding these amino acids, each of
the 21 bits are set to zero except the one which is assigned
to a given amino acid type (20 amino acids +1 space for
vacant/unknown position). All 17 units represent 8 neigh-
bours on either side and the residue for which prediction
has to be made. Thus a set of 357 binary inputs is provided
as a single input for each residue location, in which a
maximum of 17 bits will be set to 1 at one time. Choice
of eight neighbours was made as it is now a well ac-
cepted number of neighbouring residues affecting protein
conformation at a residue site (Manesh et al., 2001).

Hidden layer and the output layers consist of the same
number of units each as the number of accessibility states,
n, desired in the output (e.g. two bits each in case of two
state classification). Solvent accessibility is encoded by an
n bit binary vector in which, all the coding bits are zero
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Table 1. PDB codes of proteins used for training the network

1aba 1abr 1bdo 1beo 1bib
1bmf 1bnc 1btm 1btn 1cem
1ceo 1cew 1cfy 1chd 1chk
1cyx 1dea 1del 1dkz 1dos
1fua 1gai 1gpl 1gsa 1gtm
1hav 2i1b 2sns 3grs 3mdd

except one which corresponds to one of the accessibility
states.

Training procedure
A set of 215 proteins with less than 25% homology and
high resolution structures were selected for the present
work. This set of 215 proteins is the same as the one
recently used by Manesh et al. (2001) for implementing
information theory to ASA prediction. This data is then
divided into a training and test data sets. Only 30 proteins
(7545 residues) were randomly selected for the training
(Table 1). The remaining 185 proteins (42 037 residues)
were kept in the test data set.

A large number of weights and biases need to be
trained for the best accuracy levels with these proteins.
Initialization of weights and biases was carried out by
assigning them random values.

Training of weights is carried out one at a time, i.e.
training one weight until the change in accuracy is less
than a cutoff. Then we move on to the next weights
and train them one by one. Presenting weights in the
order of their occurrence may lead to over-training of
weights in one region of weight space. This problem of
unequal training of weights can be overcome by picking
up the weights for training randomly from the whole set
of weights. This will ensure that all network weights are
equally trained. Several training cycles are run on the
network and this further reduces the probability of unequal
training. Starting with an appropriate value of cutoff,
and gradually converging to a final cutoff value, is also
helpful in checking this problem. After a certain number of
training cycles, the accuracy cutoff is divided by a factor,
and through a number of cycles, the network settles into
the desired error minima. Training, one weight at a time,
picked randomly, allows us to stop training anywhere.
We evaluate prediction accuracy of the training data for
every change in a weight, update that weight if there is an
improvement in accuracy, or retain the value of that weight
if there is no improvement in prediction accuracy. After
a certain number of training cycles, prediction accuracy
for the test data is evaluated. If the prediction accuracy
on the test data does not improve in a cycle, training is
stopped. We have also used linear activation function for
the neurons, instead of the widely used sigmoidal function.

This allows us to increase the sensitivity of the network
over small changes in the weights.

Computation of solvent accessibility and prediction
accuracy
Solvent accessibility (%) is defined as the ratio between
the solvent accessible surface area of a residue in three
dimensional structure and that in an extended tripeptide
(Ala-X-Ala) conformation. The solvent accessible surface
areas of all atoms have been computed using the program
ASC (Eisenhaber and Argos, 1993) with the van der Waals
radii of the atoms given by Ooi et al. (1987). The extended
state coordinates have been computed using the ECEPP/2
algorithm (Momany et al., 1975) with the dihedral angles
of Oobatake and Ooi (1993).

Prediction accuracy for the training and test data sets is
defined as the percentage of correctly predicted residues
in the corresponding set of proteins. It assigns a negative
score for both under-prediction and over-prediction.

RESULTS AND DISCUSSION
Prediction of ASA
The main NETASA server (http://www.netasa.org) for
predicting solvent accessibility of each amino acid residue
in a protein has been shown in Figure 1.

We have provided several thresholds (both for two
and three states) for classifying residues as buried and
exposed. As an example, we have selected the protein
Human Thioredoxin (PDB code 1erv) for prediction,
which was not included in the training data set. Two state
prediction results for this protein for 25% threshold are
provided in Table 2. Our method correctly predicts 89 out
of 105 residues in buried or exposed category and the pre-
diction accuracy is 83%, which is an excellent agreement
between predicted and experimental ASA states obtained
from its three dimensional structure (Vijaykumar et al.,
1987; Gromiha et al., 1999).

Summary of all other prediction accuracy results for
training and test sets of 30 and 185 proteins respectively,
are presented in Table 3. A complete list of accuracy
values for all training and test proteins can be seen through
a link at http://www.netasa.org.

We found that NETASA could predict the solvent
accessibility up to an accuracy of 90% for a 0% threshold
of two state predictions. Further, the average accuracy lies
between 70 and 90% for the two state predictions and 55
and 65% for three state predictions. These accuracy levels
are superior to other methods available in the literature
(see below).

There are several indices to measure the quality of
ASA prediction, including single residue accuracy, Pear-
son’s correlation coefficient and Matthews correlation
coefficient (Matthews, 1975). However, for a two state
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Fig. 1. NETASA web server for ASA prediction with an example to Human Thioredoxin (105 residues), PDB code 1ERV.

Table 2. Prediction results for Human Thioredoxin (PDB code 1ERV)

AA M V K Q I E S K T A F Q E A L D A A G D
Ex e b e e b e e e e e b e e b b e e b e e
Pr b b e e b e e e e b b e e b b e e e e e

AA K L V V V D F S A T W C G P C K M I K P
Ex e b b b b b b b b e e b e e b e e b e e
Pr e b b b b e b b b e b b e e b e b b e e

AA F F H S L S E K Y S N V I F L E V D V D
Ex b b e e b b e e b e e b b b b b b b b e
Pr b b e b b e e e b e e b b b b e b e b e

AA D C Q D V A S E C E V K S M P T F Q F F
Ex e b e e b b e e b e b e e b b b b b b b
Pr e b e e b b e e b e b e e b e b b e b b

AA K K G Q K V G E F S G A N K E K L E A T
Ex e e e e e e e e b e e e e e e e b b e b
Pr e e e e e b e b b e e b e e e e b e e b

AA I N E L V
Ex b e e b e
Pr b e e b b

AA = Amino Acid Residue, Ex = Experimental ASA state, Pr = Predicted ASA state. b = buried, e= exposed.

prediction, the two correlation coefficients mentioned here
are identical. We have noticed that improvement in one
of these indices of prediction quality does not necessarily
imply a similar improvement in others. Neural network is
capable of learning to maximize any index of prediction
quality i.e. accuracy or correlation. Values in Table 3 are
obtained by optimizing single residue accuracy values

basically to enable a comparison with other methods. A
training to maximize any of the correlation coefficients
can however be similarly achieved.

Validation of results with re-partitioning the data
To validate the results obtained from the network men-
tioned above, we repeated all our calculations, this time,

821



S.Ahmad and M.M.Gromiha

Table 3. Summary of prediction accuracy and correlation for training and
test datasets with 30 training proteins

State Accuracy (%) and correlation∗
threshold (%) Training Test

0 89.8 (0.320) 87.9 (0.023)
5 76.1 (0.373) 74.6 (0.322)

10 75.2 (0.459) 71.2 (0.365)
25 73.1 (0.460) 70.3 (0.404)
50 80.1 (0.327) 75.9 (0.146)
10%, 20% 65.1 (0.417) 63.0 (0.373)
25%, 50% 60.9 (0.348) 55.0 (0.229)

(*) Values in brackets represent correlation coefficients.

Table 4. Summary of prediction accuracy and correlation for training, test
and validation datasets after re-partitioning the data

State Accuracy (%) and correlation∗
threshold (%) Training Test Validation

0 88.8 (0.320) 89.2 (0.071) 88.1 (0.097)
5 75.3 (0.356) 73.7 (0.251) 72.1 (0.240)

10 73.1 (0.413) 71.3 (0.352) 71.0 (0.325)
25 72.6 (0.455) 71.0 (0.414) 71.1 (0.414)
50 76.7 (0.134) 74.7 (0.117) 75.1 (0.113)

(*) Values in brackets represent correlation coefficients.

dividing the 215 proteins into three sets. One of the data
sets was used for training, others to determine where the
training be stopped (just the same way as described above)
and the third dataset was used to validate the results af-
ter the training has been completed. This leaves 72, 72
and 71 proteins in each data set. Training, test and vali-
dation data were rotated for all possible six combinations,
and the average accuracy for training, test and validation
data were obtained. Using this scheme, we could repro-
duce all the accuracy values mentioned in Table 3, with the
exception of 5% threshold where, the resultant accuracy
was found to be 72.1%. Accuracy and correlation results
of such predictions are summarized in Table 4. It is also
observed that a higher accuracy in the extreme threshold
states was accompanied by poorer correlation coefficients.
This suggests that the network has a tendency to over-
predict higher populated states. To examine this aspect, the
50% threshold predictions, which showed a 75% accuracy,
were retrained for best correlations. Training, test and val-
idation data accuracy with correlation optimizations, are
found to be 74.0, 71.6 and 71.1% respectively. Correlation
coefficients corresponding to these values are 0.332, 0.273
and 0.251 respectively. Similar training for other thresh-
olds indicates that the prediction accuracy for the best cor-
relations will vary in a narrow range of 71–72% for all
state thresholds.

Comparison with other methods
There have been several attempts in the recent past to
predict accessibility of amino acids from sequence, with
an objective to reduce the gap between the number of
known sequences and known three dimensional structures.
A direct comparison of these methods is not possible
owing to the reasons such as arbitrarily different choices
of state thresholds for ASA classification and use of
different methods to calculate ASA. However, a general
comparison of the reported accuracy values was shown
to have predictions close to 73% in the two state model
and 58% in the three state model (Richardson and Barlow,
1999). Some more investigations have been reported after
this review (Giorgi et al., 1999; Carugo, 2000; Li and
Pan, 2001; Manesh et al., 2001). Giorgi et al. (1999)
have used a knowledge based prediction model and
reported accuracy values of 85.0, 77.0 and 70.7% for
a two state model with 0, 9 and 25% state thresholds.
However, their prediction results report several residues
as ‘unknown’, and hence comparison of these figures
with other methods, including the present work is not
possible. Further, predictions in PredAcc (Giorgi et al.,
1999) provide a two state model only as compared to
two and three state models in the present work. Carugo
(2000) also developed an independent method for ASA
prediction and could obtain an accuracy of 68.7% for a
two state model. Li and Pan (2001), also used a somewhat
similar method and could obtain a prediction accuracy of
about 71.5%. Results for a three state prediction by their
method were not reported. Cuff and Barton (2000) have
reported a maximum 86.7% accuracy for a 0% threshold
with the inclusion of sequence alignment information.
A comprehensive study using information theory was
reported by Manesh et al. (2001). In their work, they
have applied information theory to several state models
including two and three states. The most significant results
relating to two state models produce an accuracy of about
70% and for a three state models the accuracy is 53
and 58% for two choices of thresholds. They have also
used their own method to calculate ASA values from
PDB data, using these figures of accuracy which seem to
be higher. However, for this comparison, we take those
values obtained using DSSP as that is a more widely
accepted method of ASA calculation. In view of the
accuracy figures mentioned above, the accuracy values in
the present work are evidently better than other methods
reported in the literature (Table 3).

A simpler choice of network design and training
Activation functions and network biases In a multilayer
neural network, the neural signals are propagated using
an activation function, which collects all the excitatory
inputs from the previous layer, calculates a weighted
sum, transforms it via a linear, sigmoidal or exponential
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function and propagates the resulting signal to the next
layer. In a two state prediction, this activation is calculated
only for two nodes in the hidden layer. In a linear network
the final state of the two output nodes are w1a + w2b and
w3a + w4b respectively, where a and b are the activations
received by the nodes in the hidden layer from the input
layer and w’s are the weights connecting hidden layers
and the output layer units. In an exponential activation,
the status of the output nodes will be altered to w1ea +
w2eb and w3ea +w4eb respectively. The actual prediction
is made by subtracting the status of one unit from the
other. Positive and negative values of this difference (D)

determine, if the residue is predicted as buried or exposed
respectively. It is obvious that the value of D for a linear
network (Dl) and for an exponential network (De), do not
become negative or positive at the same time. This means
Dl > 0 does not necessarily imply De will also be greater
than zero. We examined this relationship in the predictions
and found that the networks trained for linear activations,
may give as much as 70% lower accuracy if the same
weights were used for an exponential network. However,
the net accuracy levels achieved in the two designs of
the network were not found to differ significantly, and
therefore, we conclude a simpler linear network can also
be used to obtain similar prediction results as would be
obtained by exponential or sigmoidal functions.

We also observe that training of network biases is a
relatively redundant exercise in this problem. Since, neural
network is an approximation method anyway and many
simultaneous solutions exist for the kind of training, we
need, we experimented by setting all network biases to
zero and found that an exclusive training of weights, with
no network biases, achieves identical accuracy levels as
the ones with non-zero biases and training of biases and
weights together. Thus, doing away with network biases is
a simplification, which can be afforded in this problem.

Effect of window size and observation of over-training It
was found that the window size of the input sequence data,
does not affect the accuracy levels significantly starting
from a window size of 3 and going upto 8. This confirms
the results previously reported by Rost and Sander (1994).
To include all possible sequence information, we preferred
a window size of eight residues. However, for a training
data with a relatively high state threshold, a window size as
large as 8 creates a network too large for the training data
available in each state. For example for an 85% threshold,
there are just 1745 residues in the exposed state for whole
data set. Dividing it into training and test data sets will
leave approximately 600 residues only. A network with
eight neighbours has 718 weights and therefore training
such a large network for smaller data is not justified.
We therefore reduce the network size to allow having a
number of residues in each prediction state which is at

least four times the number of weights. Using this as a
thumb rule, we could train networks for higher thresholds.
We find that the accuracy levels with the data partitioning
into three sets, gives similar accuracy levels for higher
thresholds also, although the window size could be as low
as three.

Rost and Sander (1994) have reported that the prediction
accuracy for their training and test data sets is the same
(71.4%). Significantly, though it has been proved that a
multi layer neural network can be trained to any degree
of accuracy, and if the training is stopped, it should be
done, when test data accuracy has started falling with
an improvement in training data accuracy (Hornik et al.,
1989). In the present work, we do observe over-training.
As an example, for the case of 5% threshold, we reported
here 76.1% accuracy for training and 74.6% for test data
sets. We actually tried to train this network further and
could get a 77.9% accuracy for training data, but it reduced
the test data accuracy to only 71.9%. So, in our network,
we have clearly observed an over-training. One important
result we observed is that the incidence of over-training
becomes more likely for larger window sizes, as the
maxima of test data accuracy is then observed at relatively
higher values of training prediction accuracy.

Possible reasons for better accuracy In the present work,
we find significantly better accuracy values specially in
the extremely populated states. These high values of
accuracy are accompanied by relatively low correlations.
The following possible reasons for better accuracy values
emerge.

The network has been trained to maximize accuracy
scores, which means that the network may have over-
predictions in higher populated states. In this situation
correlation coefficients may be regarded as a better candi-
date of prediction quality. Previously reported networks
do not provide information on correlations in all thresh-
olds and therefore, we cannot conclusively say if a similar
observation was made in these networks. However, at
least two authors have reported observation of highest
prediction accuracy in the extreme state calssification of
0% threshold (Cuff and Barton, 2000; Giorgi et al., 1999).
This seems quite likely that these high accuracy values
were accompanied by low correlation coefficients.

The other possibility could have been that the relation-
ship between the residues and their accessibility may be
better represented by a linear network rather than a sig-
moidal network. However, when we train the network for
a sigmoidal activation and analyse this possibility, we do
not find significant differences in the two ways of training
except in the speed at which the two networks learn.
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CONCLUSION
We propose a simplified neural network to predict the sol-
vent accessibility of amino acid residues in a protein from
its primary sequence. This procedure includes a linear ac-
tivation function and some changes in the training proce-
dure. Together, this provides accuracy levels equally good
and even better than other existing methods. Hence, we
provide an alternative approach to using neural networks
for ASA prediction and also confirm the application of this
method with a wider range of thresholds and larger data
sets.
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