PRODUCTION AND PURIFICATION OF NIPAH VIRUS GLYCO PROTEIN IN Spodoptera frugiperda 9 (J.E. SMITH) INSECT CELL

RAKSHA SUNHARE

IB 2013 9
PRODUCTION AND PURIFICATION OF NIPAH VIRUS GLYCOPROTEIN IN Spodoptera frugiperda 9 (J.E. SMITH) INSECT CELL

RAKSHA SUNHARE

DOCTOR OF PHILOSOPHY
UNIVERSITI PUTRA MALAYSIA

2013
PRODUCTION AND PURIFICATION OF NIPAH VIRUS GLYCOPROTEIN IN
Spodoptera frugiperda 9 (J.E. SMITH) INSECT CELL

By

RAKSHA SUNHARE

Thesis Submitted to the School of Graduate Studies,
Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of
Doctor of Philosophy

October 2013
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
PRODUCTION AND PURIFICATION OF NIPAH VIRUS GLYCOPROTEIN IN Spodoptera frugiperda 9 (J.E. SMITH) INSECT CELL

By

RAKSHA SUNHARE

October 2013

Chairman: Associate Professor Tey Beng Ti, PhD
Institute: Institute of Bioscience

Nipah virus glycoprotein (NiVG) expressed in Spodoptera frugiperda 9 [Sf9 (J.E. Smith)] induces neutralizing antibodies and could be used as an early detection reagent against NiV infection to prevent. Several industrial problems during the development of recombinant truncated glycoprotein of NiV (tNiVG) of baculovirus expression vector system (BEVs) from Sf9 insect cells were investigated in this study that included production, cell disruption techniques and purification.

The production of recombinant tNiVG was enhanced by investigating the preferred medium and fermentation conditions of Sf9 cells. The maximum production of tNiVG was achieved by infecting Sf900 III serum free medium (SFM) developed middle exponential 5.0×10^6 cells/mL with quaternary amplified recombinant baculovirus at a multiplicity of infection (MOI) of 5. At the preferred condition, about 1.43 mg of tNiVG per 5.0×10^6 cells was obtained after 3 days of post–infection. The amount of tNiVG produced was equivalent to 40% of total cellular protein and thus maximum production was achieved from the insect cell–baculovirus
expression vector system. Subsequent replacement of fresh Sf900 III SFM (every 3 days) reduced the doubling time (22 h) and achieved the maximum density (15.7×10^6 cells/mL) of Sf9 cells after 4 days. Hence, fresh Sf900 III SFM was used to study the effect of amplification of recombinant baculovirus, MOI and time of infection (TOI) on tNiVG production.

The chemical lysis, freeze–thawing, high–pressure homogenisation and ultrasonication cell disruption methods were investigated to release the recombinant tNiVG from Sf9 cells. Among the investigated methods, high–pressure homogenisation with a single–pass successfully released 1.64 mg/mL tNiVG per 5.0×10^6 insect cells with a purity of 45% at high sample volume.

Comparative evaluations of three immobilised affinity chromatography methods HisTrap™ FF 1 mL prepacked column, Ni SepFast™ MAG 1 mL adsorbent and conventional method for the recovery of tNiVG from Sf9 cells homogenate were investigated. The adsorption efficiency of applied clarified and unclarified feedstock onto HisTrap™ FF 1 mL prepacked column and Ni SepFast™ 1 mL MAG adsorbent was performed at 20 sodium phosphate mM, 500 mM sodium chloride, 20 mM imidazole and 5% glycerol containing pH 8 buffer. A single–step elution of bound tNiVG was performed with 20 mM sodium phosphate containing 250 mM sodium chloride, pH 7 buffer in the presence of 200 and 300 mM imidazole from HisTrap™ prepacked column and SepFast™ MAG adsorbent, respectively. Both IMAC operations achieved 94% purity and 92% recovery yield of tNiVG. Additionally, the unclarified feedstock application onto IMAC shortened the total processing time by about 13–fold as compared to the conventional method.
Followed by a single–step purification strategy, SepFast™ Supor Q column of strong anion–exchange chromatography (AEC) was used to purify tNiVG produced in Sf9 insect cells. The preferred conditions of buffer to bind and to elute tNiVG were 50 mM sodium carbonate, pH 9 and 50 mM sodium citrate, pH 5. The use of elution buffer without sodium chloride separated the loosely bound tNiVG from the tightly bound major host proteins and subsequently avoided the desalting step as one of the further downstream processes. The developed method has recovered 89% tNiVG from the original supernatant with a protein purity of 90%. SDS–PAGE, Western blot and ELISA conformed purity and immunogenicity of single–step salt–free tNiVG (57 kDa). Further, the results of mass spectrometry confirmed the identity of tNiVG.

Information obtained from these studies was useful for development of efficient production and single–step purification of recombinant tNiVG from Sf9 cells. The overall recovery yield and purity throughout the studies proposed unit operations as simple, economic and fast method for the development of tNiVG. Along with these, the single–step purified tNiVG could be used as a potential agent for the development of an immunoassay for NiV antibodies.
Abstrak tesis yang dikemukakan kepada senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

PENGHASILAN DAN PENULENAN GLIKOPROTEIN VIRUS NIPAH YANG TERDAPAT DALAM SEL SERANGGA Spodoptera frugiperda 9 (J.E.SMITH)

Oleh

RAKSHA SUNHARE

October 2013

Pengerusi: Profesor Tey Beng Ti, PhD
Institut: Institut Biosains

Glikoprotein virus Nipah (NiVG) ungkapan dalam Spodoptera frugiperda 9 [Sf9 (J.E. Smith)] mengaruhkan antibodi peneutralan dan boleh digunakan sebagai pengesanan awal bagi melawan jangkitan NiV. Beberapa masalah industry semasa membangunkan glikoprotein rekombinan terpangkas NiV (tNiVG) daripada baculovirus ungkapan sistem vektor (BEVs) daripada sel–sel serangga Sf9 telah disiasat dalam kajian ini yang dimasukkan penghasilan, teknik–teknik gangguan sel dan penulenan.

Penghasilan protein rekombinan tNiVG telah dipertingkatkan dengan mengoptimumkan medium pilihan dan keadaan–keadaan penapaian sel–sel Sf9. Penghasilan maksimum protein tNiVG telah dicapai dengan menjangkitkan medium bebas serum (MBS) Sf900 II dibangunkan eksponen pertengahan 5.0x10^6 sel/mL dengan bakulovirus diperkuatkan kuarterner pada kegandaan jangkitan (MOI) 5. Pada keadaan pilihan, kira–kira 1.43 mg protein tNiVG per 5.0x10^6 sel telah diperolehi setiap 3 hari selepas pasca–jangkitan. Jumlah protein tNiVG yang telah dihasilkan adalah bersamaan 40% daripada jumlah protein selular dan dengan itu
penghasilan maksimum telah dicapai daripada ungkapan sistem vektor sel serangga–bakulovirus. Penggantian Sf900 III SFM segar berikutnya (setiap 3 hari) telah mengurangkan waktu penggandaan (22 j) dan telah mencapai ketumpatan maksimum (15.7×10^6 sel/mL) bagi sel–sel Sf9 selepas 4 hari. Oleh yang demikian, Sf900 III SFM segar telah digunakan untuk mengkaji kesan amplifikasi bakulovirus rekombinan, MOI dan waktu jangkitan terhadap penghasilan protein tNiVG. Lisis kimia, pencairan pembekuan, penghomogenan tekanan tinggi dan kaedah ultrasonikasi gangguan sel telah disiasat untuk membebaskan protein rekombinan tNiVG daripada sel–sel Sf9. Antara kaedah–kaedah yang telah dikaji adalah penghomogenan tekanan tinggi dengan dengan laluan tunggal telah berjaya membebaskan 1.64 mg/mL protein tNiVG per 5.0×10^6 sel–sel serangga dengan ketulenan 45% pada jumlah sampel yang tinggi.

Penilaian perbandingan terhadap tiga kaedah kromatografi keafinan pegun turus siap dibungkus HisTrap™ FF 1 mL, penjerap Ni SepFast™ MAG dan kaedah konvensional bagi pemulihan protein tNiVG dari homogenate sel–sel telah diselidik. Kecekapan pengikatan bagi stok suapan dijernihkan dan tidak dijernihkan yang digunapakai ke atas turus siap dibungkus HisTrap™ FF 1 mL dan penjerap Ni SepFast™ MAG telah dijalankan pada 20 natrium foSfat mM, 500 mM natrium klorida, 20 mM imidazole dan 5 % gliserol yang mengandungi penimbal pH 8. Elusi langkah tunggal telah dijalankan ke atas protein tNiVG yang terikat dengan 20 mM natrium foSfat yang mengandungi 250 mM natrium klorida, penimbal pH 7 dengan kehadiran 200 dan 300 mM imidazola daripada turus siapdibungkus HisTrap™ dan penjerap SepFast™ MAG masing–masingnya. Kedua–dua operasi IMAC telah mencapai 94% ketulenan dan 92% hasil pemulihan protein tNiVG. Selain itu,
penggunaan stok suapan tidak dijernihkan ke atas IMAC telah memendekkan jumlah masa pemprosesan sehingga 13–kali ganda jika dibandingkan dengan kaedah konvensional.

Diikuti dengan satu langkah strategi penulenan, turus kromatografi pertukaran anion (AEC) SepFast™ Supor Q yang kuat telah digunakan untuk menulenkan tNiVG yang telah dihasilkan oleh sel–sel serangga Sf9. Keadaan penimbal yang dipilih untuk mengikat dan menanggalkan protein tNiVG adalah 50 mM natrium karbonat, pH 9 dan 50 mM natrium sitrat, pH 5. Penggunaan penimbal elusi tanpa natrium klorida mengasingkan protein tNiVG yang terikat secara longgar daripada protein hos utama yang terikat dengan kuat dan seterusnya mengelakkan langkah penyajhgharaman sebagai salah satu proses hiliran berikutnya. Kaedah yang telah dibangunkan telah mendapatkan kembali 89% protein tNiVG daripada supernatant dengan ketulenan protein 90%. SDS–PAGE, ujian pemendapan Western dan ELISA mengesahkan ketulenan dan and keimunogenan bagi langkah–tunggal protein tNiVG bebas–garam (57 kDa). Tambah lagi, keputusan spektrometri jisim mengesahkan identiti protein tNiVG.

Maklumat yang diperoleh daripada kajian ini berguna untuk pembangunan pengeluaran yang cekap dan penulenan langkah tunggal bagi rekombinan protein tNiVG dari sel–sel Sf9. Hasil pemulihan dan ketulenan keseluruhan di sepanjang kajian mencadangkan bahawa operasi unit adalah mudah, ekonomi dan merupakan kaedah pantas bagi pembangunan protein tNiVG. Pada masa yang sama, penulenan protein tNiVG satu–langkah boleh digunakan sebagai agen yang berpotensi untuk pembangunan satu imuocerakinan bagi antibodi–antibodi NiV.
ACKNOWLEDGEMENTS

“Failures are part of life. If don’t fail, don’t learn. If don’t learn, we’ll never change”
(Source: Unknown Quotes)

Thanks to my parents for giving me the gift of life and the positive values, they taught me as a child.

My most sincere gratitude to my supervisors, Professor Dr. Tey Beng Ti, Professor Dr. Tan Wen Siang and Associate Professor Dr. Muhajir Hamid for the opportunity they gave me, their invaluable guidance, careful supervision and trust on my abilities throughout the study. Their motivational guidance made me understand the ways to apply technology effectively. My special thanks to Dr. Ramakrishnan Nagasundara Ramanan of Monash University for his generous help to accomplish this thesis.

I am heartily thankful to UPM, providing me such a great opportunity and a RUGS grant to carry out this project. I would like to acknowledge the Ministry of Higher Education, Malaysia for their financial assistance (MTCP–MOHE). I am especially thankful to all Lab Fellows for having a healthy relationship among scientists and research scholars, which lays the foundation of a united world.

Last but not least, I express my deep gratitude to my family for their patience, scarifies and moral support without which I could not have been successful! I am sure someone will continue research with this work; my best–wishes will always be with that person.

Thanks to Everyone!

Raksha Sunhare
I certify that an Thesis Examination Committee has met on date 21st October 2013 to conduct the final examination of Raksha Sunhare on her thesis entitled “Production and purification of Nipah virus glycoprotein in *Spodoptera frugiperda* 9 (J.E. Smith) insect cell” in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Arbakariya B. Ariff, PhD
Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Chairman)

Shuhaimi bin Mustafa, PhD
Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Internal Examiner)

Rosfarizan Mohamad, PhD
Associate Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Internal Examiner)

Shin–Ichiro Suye, PhD
Professor
Department of Applied Chemistry and Biotechnology
University of Fukui
Japan
(External Examiner)

NORITAH OMAR, PhD
Associate Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 19 December 2013
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows;

Tey Beng Ti, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Tan Wen Siang, PhD
Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Member)

Muhajir Hamid, PhD
Associate Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I declare that the thesis is my original work except for quotation and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

RAKSHA SUNHARE
Date: 21 October 2013
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th></th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>i</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td></td>
<td>iv</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td></td>
<td>vii</td>
</tr>
<tr>
<td>APPROVAL</td>
<td></td>
<td>viii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF APPENDIX</td>
<td></td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td></td>
<td>xviii</td>
</tr>
</tbody>
</table>

CHAPTER 1
INTRODUCTION
1

CHAPTER 2
LITERATURE REVIEW
2.1 Nipah virus (NiV)
2.1.1 Nipah virus glycoprotein (NiVG)
2.1.2 Studies on the NiVG
2.2 Studies on recombinant protein expression and production
2.2.1 Glycoprotein expression technologies
2.2.2 Insect cell–Baculovirus expression vector system
2.2.3 Effects of factor affecting protein production
2.3 Studies on recombinant protein purification
2.3.1 Cell disruption method
2.3.2 Immobilised metal affinity chromatography (IMAC)
2.3.3 Ion–exchange chromatography (IEC)
2.4 Concluding remarks

CHAPTER 3
GENERAL MATERIALS AND METHODS
35

3.1 Maintenance of cell lines
3.1.1 Cell thawing and freezing
3.1.2 Subculture and counting of cells
3.1.3 Adapting monolayer to suspension culture
3.1.4 Sequential development of serum free Sf9 cells
3.2 Generation of recombinant baculovirus
3.2.1 Competent DH10 Bac cell preparation
3.2.2 Transposition
3.2.3 Transfection
3.2.4 Recombinant virus propagation
3.3 Analytical methods
3.3.1 PCR analysis of bacmid DNA
3.3.2 Virus titration by plaque assay

xi
3.3.3 Bradford Assay 42
3.3.4 Sodium dodecyl sulphate–polyacrylamide gel electrophoresis (SDS–PAGE) 42
3.3.5 Western blotting 43
3.3.6 Quantitative analysis of tNiVG 44
3.3.7 Enzyme–linked immunosorbent assay (ELISA) 44
3.4 Calculations 45
3.4.1 Calculations for inoculums volume 45
3.4.2 Subculture and growth related calculations 46
3.4.3 Calculations for adsorption analysis 47
3.4.4 Calculations for purification profile analysis 48

4 EFFECT OF MEDIUM AND INFECTION CONDITION OF Spodoptera frugiperda 9 (J.E. Smith) FOR THE PRODUCTION OF NIPAH VIRUS GLYCOPROTEIN 50
4.1 Introduction 50
4.2 Materials and methods 52
4.2.1 Effect of media over S/9 cell densities 52
4.2.2 Identification and amplification of tNiVG 53
4.2.3 Effect of MOI on production of tNiVG 54
4.2.4 Effect of TOI on production of tNiVG 54
4.2.5 Protein qualitative and quantitation analysis 56
4.3 Results and discussion 56
4.3.1 Effect of media over S/9 cell densities 56
4.3.2 Identification and amplification of tNiVG 58
4.3.3 Effect of MOI on production of tNiVG 59
4.3.4 Effect of TOI on production of tNiVG 61
4.4 Summary 63

5 COMPARISON OF THE PERFORMANCE OF TWO IMMOBILISED METAL AFFINITY CHROMATOGRAPHY SYSTEMS FOR THE PURIFICATION OF NIPAH VIRUS GLYCOPROTEIN 64
5.1 Introduction 64
5.2 Materials and methods 66
5.2.1 Materials 66
5.2.2 Feedstock preparation 67
5.2.3 Cell disruption 67
5.2.4 Investigation of binding and elution of tNiVG 68
5.2.5 Dynamic binding capacity and batch adsorption 69
5.2.6 Protein qualitative and quantitation 70
5.3 Results and discussion 71
5.3.1 Cell disruption 71
5.3.2 Protein adsorption condition of tNiVG 74
5.3.3 Elution condition of tNiVG 76
5.3.4 Determination of loading condition 79
5.3.5 Purification of tNiVG and analysis 81
5.4 Summary 89

6 A SINGLE STEP PURIFICATION OF GLYCOPROTEIN OF NIPAH VIRUS IN INSECT CELLS USING AN ANION–EXCHANGE CHROMATOGRAPHY METHOD 90

6.1 Introduction 90
6.2 Materials and methods 92
 6.2.1 Materials 92
 6.2.2 Feedstock preparation 92
 6.2.3 Investigation of binding and elution of tNiVG 93
 6.2.4 Determination of dynamic binding capacity and protein adsorption efficiency 94
 6.2.5 Protein qualitative and quantitation analysis 94
 6.2.6 Identification of tNiVG by Mass spectrometry 94
6.3 Results and discussion 95
 6.3.1 Protein adsorption condition of tNiVG 95
 6.3.2 Elution condition of tNiVG 96
 6.3.3 Determination of loading condition 98
 6.3.4 Purification of tNiVG and analysis 100
6.4 Summary 105

7 GENERAL DISCUSSION, CONCLUSION AND FUTURE PERSPECTIVES 106

7.1 General discussion 106
7.2 General conclusion 110
7.3 Future prospects 111

REFERENCES 113
APPENDIX 133
BIODATA OF STUDENT 139
LIST OF PUBLICATIONS 140