UNIVERSITI PUTRA MALAYSIA

INDUCTION OF APOPTOSIS BY cis-3-(3',4''-DIMETHOXYPHENYL)-4-[(E)-3'',4''-DIMETHOXYSTYRYL]CYCLOHEX-1-ENE ISOLATED FROM THE RHIZOME OF Zingiber cassumunar Roxb. ON HUMAN T-LYMPHOBLASTIC LEUKEMIA CELL LINE, CEMss

THEEBAA ANASAMY

IB 2013 8
INDUCTION OF APOPTOSIS BY cis-3-(3',4'-DIMETHOXYPHENYL)-4-[(E)-3''',4'''-DIMETHOXY-STYRYL]CYCLOHEX-1-ENE ISOLATED FROM THE RHIZOME OF Zingiber cassumunar Roxb. ON HUMAN T-LYMPHOBLASTIC LEUKEMIA CELL LINE, CEMss

THEEBAA ANASAMY

MASTER OF SCIENCE
UNIVERSITI PUTRA MALAYSIA

2013
INDUCTION OF APOPTOSIS BY cis-3-(3',4'-DIMETHOXYPHENYL)-4-[(E)-3''',4''''-DIMETHOXYSTYRYL]CYCLOHEX-1-ENE ISOLATED FROM THE RHIZOME OF Zingiber cassumunar Roxb. ON HUMAN T-LYMPHOBLASTIC LEUKEMIA CELL LINE, CEMss

By

THEEBAA ANASAMY

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

May 2013
DEDICATION

To my late parents, Anasamy Rajoo and Asothda Muthiah. Their words of inspiration and encouragement in pursuit of excellence, still lingers on.
Abstract of thesis presented to the senate of Universiti Putra Malaysia in fulfilment of the requirements for the degree of Master of Science

INDUCTION OF APOPTOSIS BY cis-3-(3',4'-DIMETHOXYPHENYL)-4-[(E)-3''',4''''-DIMETHOXYSTYRYL]CYCLOHEX-1-ENE ISOLATED FROM THE RHIZOME OF Zingiber cassumunar Roxb. ON HUMAN T-LYMPHOBLASTIC LEUKEMIA CELL LINE, CEMss

By

THEEBAA ANASAMY

May 2013

Chair: Ahmad Bustamam Abdul, PhD

Faculty: Institute of Bioscience

Zingiber cassumunar Roxb. is one of the most widely cultivated species of Zingiberaceae family and commonly known as ‘plai’ in Thailand and ‘bonglai’ in Malaysia. cis-3-(3',4'-Dimethoxyphenyl)-4-[(E)-3''',4''''-dimethoxystyryl]cyclohex-1-ene (ZC-B11) is a phenylbutenoid dimer isolated from the rhizomes of Z. cassumunar. The objective of this study is to investigate the antiproliferative activities of this compound on human T-lymphoblastic cell line, CEMss and the mechanism by which apoptosis is triggered. In vitro cytotoxic effect of ZC-B11 was determined using MTT assay in several human cancer cell lines including leukemia (CEMss). ZC-B11 showed selectivity towards CEMss with an IC_{50} value of 7.11 ± 0.24 µg/ml. The antiproliferative activity of ZC-B11 was also tested against non-tumorigenic human blood mononuclear cells and ZC-B11 does not show cell growth inhibition of human blood mononuclear cells (IC_{50} > 50 µg/ml).
Various microscopy techniques used in this study showed distinctive morphological changes corresponding to typical apoptosis. Cell cycle analysis revealed significant ($p < 0.05$) S phase arrest in a time-depended manner whilst DNA fragmentation of ZC-B11 treated CEMss cells was detected using 1.2% agarose gel. Decrement of mitochondrial membrane potential was also observed in treated CEMss cells in time-depended manner using the Rh123 staining. To evaluate further the mechanisms of apoptosis induction by ZC-B11 towards CEMss cells, screening of several proteins implicated to apoptosis induction were done using the human apoptosis proteome profiler array, in which, proteins such as Bax, caspase 3, cytochrome c and SMAC showed significant increase ($p < 0.05$) compared to untreated control cells, whilst proteins such as Bcl-2, HSP70 and XIAP decreased significantly. On the other hand, caspase 8, p53 and BID remain unaffected ($p > 0.05$). Caspase bioluminescent assay and Western blot analysis were done to further confirm these results. Collectively, results presented in this study demonstrate that ZC-B11 isolated from the rhizome of Z. cassumunar inhibited the proliferation of CEMss selectively, leading to the programmed cell death via mitochondrial signaling pathway and has the potential to be developed as an antileukemic and chemotherapy agent.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

PENGARUHAN APOPTOSIS OLEH cis-3-(3',4'-DIMETOKSFENIL)-4-[(E)-3'''',4''''-DIMETOKSISTIRIL]SIKLOHEKS-1-ENA YANG DIPENCILKAN DARIPADA RIZOM Zingiber cassumunar Roxb. KE ATAS TITISAN SEL LEUKEMIA T-LIMFOBLASTIK MANUSIA, CEMss

Oleh

THEEBAA ANASAMY

Mei 2013

Pengerusi: Ahmad Bustamam Abdul, PhD

Fakulti: Institut Biosains

penahanan yang signifikan \((p < 0.05)\) pada fasa S selari dengan tempoh masa perlakuan manakala fragmentasi DNA juga dibuktikan melalui elektroforesis gel agaros 1.2%. Susutan ketelapan membran mitokondria juga diperhatikan pada sel-sel CEMss selari dengan peningkatan tempoh masa perlakuan ZC-B11 dengan bantuan pewarna Rh123. Untuk menilai seterusnya mekanisme aruhan apoptosis oleh ZC-B11 ke atas sel-sel CEMss, penglibatan beberapa protein yang berkaitan dengan pengaruh apoptosis dikaji dengan menggunakan tatasusun pemprofil protein apoptosis manusia di mana, protein-protein seperti Bax, kaspase 3, sitokrom c and SMAC menunjukkan peningkatan signifikan \((p < 0.05)\) berbanding sel-sel kawalan manakala protein-protein seperti Bcl-2, HSP70 and XIAP menunjukkan penurunan aras pengekspresan yang signikan. Aras pengekspresan kaspase 8, p53 and BID pula tidak terjejas \((p > 0.05)\). Asai biolumenesen kaspase dan pemblotan Western dilakukan untuk mengesahkan hasil yang diperoleh. Secara kolektifnya, hasil kajian yang diperoleh menunjukkan bahawa ZC-B11 yang dipencil dari rizom \(Z.\) cassumunar berupaya menghalang proliferasi sel-sel CEMss secara terpilih dan seterusnya menyebabkan kematian sel secara terprogram melalui tapak jalan pengisyaratan mitokondria dan berpotensi untuk dibangunkan sebagai agen antileukemia dan kemoterapi.
ACKNOWLEDGEMENTS

First and foremost I would like to thank God. You have given me the power to believe in my passion and pursue my dreams.

I would like to take this opportunity to express my profound gratitude and deep regards to my supervisor, Dr. Ahmad Bustamam Abdul for his exemplary guidance, monitoring and constant encouragement throughout the course of my study. The blessing, help and guidance given by him time to time shall carry me a long way in the journey of life on which I am about to embark. My utmost appreciation also goes to Prof. Dr. Mohd Aspollah Sukari, Asc. Prof. Dr. Siddig Ibrahim Abdelwahab, Asc. Prof. Dr. Syam Mohan Murali Mohan and Dr. Behnam Kamalidehghan, without their continuous support, encouragement, help and advice, I will not be able to complete this thesis.

My deepest gratitude also goes to my siblings: Ms. Shumathi, Ms. Manjula and Ms. Bhanu and my brother in law, Mr. Vinod Sivanathan for their unflagging love and constant encouragement without which this thesis would not be possible. Special thanks to Mr. Thinesh Kumar who has supported me throughout entire process, both by keeping me harmonious and helping me putting pieces together.

Last but not least, I would like to thank my fellow friends and staffs of UPM-Makna Cancer Research Laboratory for all their help and cooperation.
I certify that a Thesis Examination Committee has met on 7 May 2013 to conduct the final examination of Theebaa a/p Anasamy on her thesis entitled “Induction of Apoptosis by cis-3-(3',4'-Dimethoxyphenyl)-4-[(E)-3''',4'''-dimethoxystyryl]cyclohex-1-ene Isolated from the Rhizome of Zingiber cassumunar Roxb on Human T-lymphoblastic Leukemia Cell Line, CEMss” in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the degree of Master of Science.

Members of the Thesis Examination Committee were as follows:

Rasedee bin Abdullah, PhD
Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Chairman)

Noorjahan Banu binti Mohammed Alitheen, PhD
Associate Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Internal Examiner)

Zeenathul Nazariah binti Allaudin, PhD
Associate Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Internal Examiner)

Chung Lip Yong, PhD
Professor
Faculty of Medicine
Universiti Malaya
(External Examiner)

NORITAH OMAR, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Ahmad Bustamam Abdul, PhD
Lecturer
Institute of Bioscience
Universiti Putra Malaysia
(Chairman)

Mohd. Aspollah Sukari, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Member)

Siddig Ibrahim Abdelwahab, PhD
Associate Professor
Faculty of Medicine
Universiti Malaya
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I hereby declare that the thesis is based on my original work except for quotation and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Putra Malaysia or other institutions.

THEEBAA ANASAMY

Date: 7 May 2013
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>DEDICATION</th>
<th>ii</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vii</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>viii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xviii</td>
</tr>
</tbody>
</table>

CHAPTER

1 **INTRODUCTION**
1.1 Introduction
1.2 Objectives

2 **LITERATURE REVIEW**
2.1 Natural Product Derived Drug
2.2 Plant Derived Anticancer Drug
2.3 Zingiberaceae
2.4 *Zingiber cassumunar*
 2.4.1 Taxonomical Classification of *Z. cassumunar*
 2.4.2 The Ethnobotany and Medicinal Values of *Z. cassumunar*
 2.4.3 Medicinal Values of Phenylbutenoids isolated from *Z. cassumunar*
2.5 *cis-3-(3,4-Dimethoxyphenyl)-4-[(E)-3,4-dimethoxy styryl]cyclohex-1-ene*
2.6 Leukaemia
 2.6.1 Acute leukaemia
 2.6.1.1 Acute lymphoblastic leukaemia (ALL)
 2.6.1.2 Acute myeloid leukaemia (AML)
 2.6.2 Chronic Leukaemia
 2.6.2.1 Chronic Myeloid Leukaemia (CML)
 2.6.2.2 Chronic Lymphocytic Leukaemia (CLL)
2.7 Risk factors for leukemia
 2.7.1 Ionising radiation
 2.7.2 Benzene
 2.7.3 Lifestyle
2.8 Apoptosis
 2.8.1 The extrinsic pathway
 2.8.2 The intrinsic pathway
2.9 The Bcl-2 family proteins
 2.9.1 Bcl-2-like survival factors
 2.9.2 Bax-like death factor
 2.9.3 BH3-only death factors
2.10 Caspases 31
 2.10.1 Caspases in Cancer and the Activation Mechanism 33
 2.10.2 Apoptosis Initiator Caspases 33
 2.10.3 Apoptosis Effector Caspases 36
2.11 p53 37
2.12 Inhibitor of Apoptosis Proteins (IAPs) 37

3 MATERIALS AND METHODS 40
3.1 Compound Isolation and Purification 40
3.2 Antiproliferative Activity of ZC-B11 40
 3.2.1 Cell Culturing 40
 3.2.2 Cell Counting 41
 3.2.3 Cell Viability Assay and IC_{50} Determination 41
 3.2.4 The Cytotoxic Effect on Human Blood Mononuclear Cells Lymphocytes 42
3.3 Cell Death Mode Determination 43
 3.3.1 Microscopic Observation of Cellular Morphology Using Phase-contrast Inverted Microscope 43
 3.3.2 Quantification of Apoptosis Using Propidium Iodide and Acridine Orange Double Staining 43
 3.3.3 Annexin V-FITC Assay 44
 3.3.4 Cell Cycle Arrest Analysis 45
 3.3.5 DNA Fragmentation 46
3.4 Protein Expression and Pathway Study 48
 3.4.1 Qualitative Analysis of Mitochondrial Membrane Potential 48
 3.4.2 Protein Extraction and Concentration Determination 48
 3.4.3 Detection of the Relative Levels of 43 Apoptosis Related Markers 49
 3.4.4 Caspase Bioluminescent Assay 51
 3.4.4.1 Caspase 3/7 51
 3.4.4.2 Caspase 8 52
 3.4.4.3 Caspase 9 52
 3.4.5 Western Blotting 53
3.5 Statistical Analysis 54

4 RESULTS 55
4.1 In vitro Antiproliferative Activity 55
 4.1.1 Screening of the Antiproliferative Activity of ZC-B11 on T-Acute Lymphoblastic Leukemia Cell Line (CEMss), Breast Cancer Cell Lines (MCF-7 and MDA-MB-231), Liver Cancer Cell Line (HepG2), Cervical Cancer Cell Line (HeLa) and human blood mononuclear cells 55
 4.1.2 Antiproliferative Activity of 5-fluorouracil on T-Acute Lymphoblastic Leukemia Cell Line (CEMss) 58
4.2 Microscopic Observation of Cellular Morphology using Phase-contrast Inverted Microscope 59
4.3 Quantification of Apoptosis using Propidium Iodide and Acridine Orange Double Staining 62
4.4 Annexin V-FITC Assay 69
4.5 Cell Cycle Analysis 71
4.6 DNA Fragmentation 73
4.7 Qualitative Analysis of Mitochondrial Membrane Potential 75
4.8 Human apoptosis proteome profiler array 77
4.9 Caspase Bioluminescent Assay 79
4.10 Western Blot Analysis 81

5 DISCUSSION 83
5.1 In vitro Antiproliferative Activity 83
5.2 Microscopic Observation of Cellular Morphology using Phase-contrast Inverted Microscope 86
5.3 Quantification of Apoptosis using Propidium Iodide and Acridine Orange Double Staining 87
5.4 Annexin V-FITC Assay 88
5.5 Cell Cycle Analysis 91
5.6 DNA Fragmentation 93
5.7 Qualitative Analysis of Mitochondrial Membrane Potential 94
5.8 Human Apoptosis Proteome Profiler Array 96
5.9 Caspase Bioluminescent Assay 100
5.10 Western Blot Analysis 101

6 SUMMARY, CONCLUSION AND FUTURE RECOMMENDATIONS 102

REFERENCES 106
APPENDICES 126
BIODATA OF STUDENT 136
LIST OF PUBLICATIONS 137