UNIVERSITI PUTRA MALAYSIA

Population characterization of Macrobrachium rosenbergii De Man USING EST-SSR MARKERS in WESTERN PENINSULAR MALAYSIA

ATIN KHALAJ HEDAYATI

FP 2014 13
POPULATION CHARACTERIZATION of
Macrobrachium rosenbergii De Man
USING EST-SSR MARKERS in
WESTERN PENINSULAR MALAYSIA

By
ATIN KHALAJ HEDAYATI

Thesis Submitted to the School of Graduate Studies,
Universiti Putra Malaysia, in Fulfillment of the
Requirements for the Degree of Master of Science

July 2014
All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
This thesis is dedicated to

my lovely parents

(Mohammad Javad Khalaj Hedayati and Talayeh Etemadzadeh)

for their love, endless support and encouragement.
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Master of Science

POPULATION CHARACTERIZATION of *Macrobrachium rosenbergii* De Man USING EST-SSR MARKERS in WESTERN PENINSULAR MALAYSIA

By

ATIN KHALAJ HEDAYATI

Chair: Annie Christianus, PhD
Faculty: Agriculture

The purpose of current study is to illustrate the utility of EST-derived SSR in characterizing wild populations of *Macrobrachium rosenbergii* in Malaysia’s rivers. A novel set of EST-SSR was validated in a full panel of 120 samples from four wild populations through Polymerase Chain Reaction (PCR). Seven EST-SSR loci were identified, characterized, and evaluated on 30 individuals each from the populations namely Sg. Tapah (Perak), Sg. Timun (Negeri Sembilan), Sg. Bernam (Selangor) and Sg. Johor (Johor). The average polymorphic informative content value (PIC) for these seven primers was found to be 0.5355 indicating considerable degree of polymorphism with number of alleles detected ranged from 5 to 17. The observed heterozygosity value count during multi-population analyses ranged from 0.3668 to 0.4554, whilst the expected ranged from 0.5192 to 0.5700. There was linkage disequilibrium (LD) observed between 2 pairs of EST-SSRs loci. All loci have deviation from the Hardy-Weinberg equilibrium (HWE) except EST-Mr-AS-31957, suggesting factors violating the neutral expectation such as selection and non random mating. The \(F_{IS} \) index demonstrated indication of inbreeding among individuals of each population. There was evidence that all samples from four sampling sites assessed in this study are drawn from four clusters (\(k=4 \)). Estimate of fixation index value in pairwise comparisons among the four localities revealed very low magnitude of differentiation (\(R_{ST} \) ranged between 0.0000 to the highest of 0.17918).

The findings of this study suggested that intra-specific diversity that occurs between studied populations were not extremely high, as very low variation was detected in pairwise comparisons and genetic structuring analyses. The ongoing gene flow either naturally or via translocations by humans are possible reasons for the low magnitude of genetic differentiation. The overall results suggest that all populations (Tapah, Timun, Bernam, and Johor) were composed of one large possible panmictic population for management purposes at present.
Also the results indicated that these polymorphic EST-SSR derived from *M. rosenbergii* would be useful for population genetic structure analysis and genetic diversity assessment in prawn populations as part of management policies of natural resources to ensure sustainability of wild broodstock for future development of prawn culture industries.
Abstrak tesis ini dikemukakan kepada senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Science

PENCIRIAN POPULASI *Macrobium rosenbergii* De Man MENGGUNAKAN PENANDA EST-SSR UNTUK DI SEMENANJUNG MALAYSIA

Oleh

ATIN KHALAJ HEDAYATI

Julai 2014

Pengerusi: Annie Christianus, PhD
Fakulti: Pertanian

Kajian ini bertujuan untuk menunjukkan penggunaan EST dari SSR dalam pencirian populasi liar *Macrobium rosenbergii* di sungai di Malaysia. Satu set EST-SSR yang novel disahkan dengan 120 sampel panel penuh dari empat populasi liar melalui Reaksi Rantai Polimerase (PCR). Tujuh loci EST-SSR dikenalpasti, dicirikan dan dinilai untuk 30 individu dari setiap populasi iaitu Sg. Tapah (Perak), Sg. Timun (Negeri Sembilan), Sg. Bernam (Selangor) dan Sg. Johor (Johor). Nilai purata kandungan maklumat polimorfik (PIC) untuk tujuh primer ini adalah 0.5355, menunjukkan terdapatnya tahap polimorfinis dengan bilangan alel yang dikesan adalah di antara 5 hingga 17. Pengiraan nilai heterozigositi yang didapati semasa analisi multi populasi adalah dari 0.3668 hingga 0.4554, manakala jualat yang dijangka dari 0.5192 hingga 0.5700. Terdapat ketidak-seimbangan hubungan (LD) yang didapati adalah di antara 2 pasang loci EST-SSR. Semua loci tersisih dari keseimbangan Hardy-Weinberg (HWE) kecuali EST-Mr-AS-31957, ini mencadangkan faktor yang bercanggah ke atas jangkaan neutral seperti pemilihan dan pembiakan tidak rawak. Indeks F_{IS} menunjukkan pembiakan sesama sendiri di antara individu di dalam setiap populasi. Bukti menunjukkan bahawa semua sampel dari empat lokasi persampelan yang dinilai dalam kajian ini adalah berasal dari empat kluster (k=4). Anggaran nilai indeks penetapan dalam perbandingan berpasangan di antara empat lokasi menunjukkan jarak pembezaan yang sangat rendah (R_{ST} di antara 0.0000 hingga paling tinggi 0.17918).

Hasil kajian ini mencadangkan bahawa kepelbagaian intra-spesifik di antara populasi yang dikaji adalah tidak terlalu tinggi, kerana di mana variasi yang sangat rendah dikesan dalam perbandingan berpasangan dan analisis penstrukturkan genetik. Aliran gen yang ada yang berterusan samada secara semulajadi atau melalui translokasi oleh manusia adalah sebab yang mungkin untuk jarak pembezaan genetic yang rendah. Keputusan keseluruhan mencadangkan bahawa semua populasi (Tapah, Timun, Bernam, dan Johor) adalah terdiri dari satu populasi panmiktik yang besar untuk tujuan pengurusan pada masa sekerang.

Keputusan juga menunjukkan bahawa polimorfik EST-SSR yang didapati dari *M.
rosenbergii berguna untuk analisis struktur populasi genetik dan penilaian kepelbagaian genetik dalam populasi udang sebagai sebahagian daripada polisi pengurusan sumber semulajadi untuk memastikan kemampuan induk liar demi perkembangan industri pengkulturan udang di masa akan datang.

ACKNOWLEDGMENTS
At the end of this step of my graduate period I wish to acknowledge people who have contributed to both my work, and my life during of this period of time. First, I would like to express my full thanks and sincere gratitude to my great dear supervisor, Dr. Annie Christianus for all of guidance, discussions, unlimited assistance consultations and support. I also would like to thank my committee members: Dr. Subha Bhassu and Dr. Natrah Fatin Mohd Ikhsan for their invaluable suggestions, beneficial advices and their endless helps. I am also grateful to Prof. Siti Shapor Siraj for her help at the beginning of my study. I would like to express my full thanks and sincere gratitude to my dear family for their encouragements, emotional supports and fortitude efforts in my lifetime.
I certify that a Thesis Examination Committee has met on 10 July 2014 to conduct the final examination of Atin Khalajhedayati on her thesis entitled "Population Characterization of *Macrobrachium rosenbergii* De Man using EST-SSR Markers in Western Peninsular Malaysia" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Abdul Razak bin Alimon, PhD
Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

Abdul Rahman bin Omar, PhD
Professor
Institute of Bioscience
Universiti Putra Malaysia
(Internal Examiner)

Che Roos b Saad, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Internal Examiner)

Siti Azizah Mohd. Nor, PhD
Associate Professor
Universiti Sains Malaysia
Malaysia
(External Examiner)

NORITAH OMAR, PhD
Associate Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 19 September 2014
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Annie Christianus, PhD
Senior Lecturer
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

Subha Bhassu, PhD
Senior Lecturer
Faculty of Science
Universiti Malaya
(Member)

Natrah Fatin Mohd Ikhsan, PhD
Senior Lecturer
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by Graduate Student

I hereby confirm that:

- This thesis is my original work;
- Quotations, illustrations and citation have been duly referenced;
- This thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- Intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to Universiti Putra Malaysia (Research) Rules 2012;
- Written permission must be obtained from supervisor and deputy Vice Chancellor (Research and innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceeding, popular writings, seminar papers, manuscripts, posters, lecture notes, learning modules or any other materials as stated in Universiti Putra Malaysia (Research) Rules 2012;
- There is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity was upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rule 2003 (Revision 2012-2013) and the University Putra Malaysia (research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: ___________________ Date: ________________

Name and Matric No: __________________
Declaration by Members of Supervisory Committee

This is to confirm that:
• The research conducted and the writing of this thesis was under our supervision;
• Supervision responsibilities as stated in Rule 41 in Rules 2003 (Revision 2012-2013) were adhered to.

Signature:
Name of Chairman of Supervisory Committee: Annie Christianus, PhD

Signature:
Name of Chairman of Supervisory Committee: Subha Bhassu, PhD

Signature:
Name of Chairman of Supervisory Committee: Natrah Fatin Mohd Ikhsan, PhD
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>v</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xv</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

2 LITERATURE REVIEW

2.1 *Macrobrachium rosenbergii*
2.1.1 Classification and taxonomy
2.1.2 Biological characterization
2.1.3 Morphology of *Macrobrachium rosenbergii*
2.1.4 Life cycle
2.1.5 Habitat and distribution
2.1.6 *Macrobrachium rosenbergii* in aquaculture
2.1.7 *Macrobrachium rosenbergii* culture in Malaysia
2.2 Population genetics
2.2.1 Molecular markers
2.2.2 Application of DNA markers in aquaculture studies
2.2.3 Microsatellite markers
2.2.4 Expressed Sequence Tags-derived Microsatellites (EST-SSR)
2.2.5 Microsatellite in aquaculture genetic studies
2.3 The significance of genetic diversity study of *Macrobrachium rosenbergii*’s wild population by EST-SSRs marker

3 METHODOLOGY

3.1 Samples collection
3.2 DNA extraction
3.3 DNA concentration and purification
3.4 PCR Optimization
3.4.1 Preparation of DNA working concentration
3.4.2 Primer optimization (Gradient PCR)
3.5 PCR amplification
3.6 Gel electrophoresis for testing PCR reaction
3.6.1 Preparing the 1% Agarose gel ... 27
3.6.2 Loading samples on the gel ... 27
3.7 Fragment analysis .. 27
3.8 Data analysis and Interpretation of microsatellite loci 28
 3.8.1 Identification And Checking For Scoring Errors 28
 3.8.2 Tests For Conformation To Equilibrium Expectations 29
 3.8.3 Estimating Genetic Diversity ... 30
 3.8.4 Measuring Sub-Population Differentiation 32
 3.8.5 Inferring Population Structure .. 33

4 RESULTS .. 34
 4.1 DNA extraction .. 34
 4.2 Micosatellite primer testing ... 34
 4.3 PIC (Polymorphic Information Content) ... 37
 4.4 Determination of microsatellite allele sizes ... 37
 4.5 Statistical data analysis .. 38
 4.5.1 Error checking .. 38
 4.5.2 Hardy-Weinberg equilibrium and linkage disequilibrium 38
 4.5.3 Characterization of EST-SSR loci isolated from M. rosenbergii 42
 4.5.3.1 Polymorphic Information Content (PIC) and Genetic Variability for all individuals 42
 4.5.3.2 Heterozygosity ... 43
 4.5.4 EST-SSR loci for characterizing populations genetics of four wild locations ... 45
 4.5.4.1 Genetic Diversity .. 45
 4.5.4.2 Heterozygosity and Inbreeding 47
 4.5.4.3 Genetic Differentiation ... 47
 4.5.4.4 Population structure .. 48

5 DISCUSSION .. 50
 5.1 Microsatellite loci and preliminary polymorphism testing 50
 5.2 Conformity to neutral expectations .. 50
 5.3 Characterization of EST-SSR loci isolated from M. rosenbergii 51
 5.4 Genetic structure among populations from four wild locations 52

6 CONCLUSION ... 54
REFERENCES .. 56
APPENDICES ... 66
BIODATA OF STUDENT .. 72
PUBLICATIONS ... 73

xii