UNIVERSITI PUTRA MALAYSIA

IN VITRO PROPAGATION AND ORGAN CULTURE OF
KACIP FATIMAH (Labisia pumila var. alata)

NITA AZLIN JAAFAR

FBSB 2013 31
IN VITRO PROPAGATION AND ORGAN CULTURE OF KACIP FATIMAH
(Labisia pumila var. alata)

By

NITA AZLIN JAAFAR

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Master of Science

October 2013
COPYRIGHT

All materials contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
Abstract of thesis Presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Masters of Science

IN VITRO PROPAGATION AND ORGAN CULTURE OF KACIP FATIMAH
(Labisia pumila var. alata)

By

NITA AZLIN JAAFAR

October 2013

Chairperson: Norihan Mohd Saleh PhD

Faculty: Biotechnology and Biomolecular Sciences

An in vitro propagation of Labisia pumila (L. pumila) var. alata was established using stem explants cultured on MS medium with the presence of different types of cytokinin and auxin. Three healthy shoots with fully expanded leaves per stem were obtained from stem explants culture on MS medium supplemented with 2.2 – 4.4 µM BAP. Addition of higher concentrations of BAP increased the multiple shoots formation however the leaves formed were very small. The shoots were elongated (up to 5 to 7 cm) in medium containing GA3 with a concentration ranging from 2.9 – 4.9 µM GA3. The elongated shoots were rooted using MS supplemented with different level of auxin. The highest number of roots were observed in medium containing 2 µM IBA (i.e average of 20 root segment per plantlet).

Leaf explants cultured onto MS supplemented with NAA promoted the formation of short and thick root, while addition of IBA promoted the formation of long and thin roots. The highest number of root formation was seen in MS medium supplemented with 5µM NAA (i.e 13 root per explants). Following adventitious root induction, root suspension culture was successfully initiated using MS medium supplemented with 5µM NAA and 5 µM IBA. The highest fresh weight increment of the root culture was observed in MS medium supplemented with 5µM NAA (1g of root per month).

In this study, attempts were made to induce hairy root from L. pumila var. alata using different strains of A. rhizogenes and different methods of infection. However, formation of hairy root was not observed even after 14 months of culture although the same set of A. rhizogenes were able to induce hairy root from leaf explants of tobacco.
Thus, to understand the mechanism underlying the host-microbe interaction during infection process, a set of virulence (\textit{vir}) genes in \textit{A. rhizogenes} which are responsible for the interaction, transfer and integration of the T-DNA were analyzed. The \textit{vir} genes expression in \textit{A. rhizogenes} was compared in order to study the activity in the susceptible and recalcitrant plant. The expression of \textit{virA} gene was observed to increase over time indicating successful interaction between plant host and \textit{A. rhizogenes}. \textit{VirD2} gene was also observed to be expressed following infection thus it was hypothesized that the T-DNA was processed for further transportation into the plant host genome. The expression of genes responsible for transport channel, \textit{virB5} and \textit{virD4} was also observed thus indicating that the transfer of the T-DNA into the host plant may already take place. However, further analysis on the plant host genome shows that the T-DNA was not present after two days of infection indicating the possible loss of T-DNA.
IN VITRO PROPAGATION AND ORGAN CULTURE OF KACIP FATIMAH
(Labisia pumila var. alata)

Oleh

NITA AZLIN JAAFAR

Oktober 2013

Pengerusi:    Norihan Mohd Saleh, PhD
Fakulti     :  Bioteknologi dan Sains Biomolekul

Protokol bagi pembiakbakaan Labisia pumila var. alata secara in vitro telah dibangunkan dengan menggunakan segmen batang sebagai eksplan. Eksplan ini telah diinkubasi dalam media MS yang ditambah dengan auxin serta cytokinin pada kepekatan yang berbeza-beza. Tiga pucuk dengan daun yang lebar telah diperoleh bagi setiap batang apabila 2.2 – 4.4 µM BAP ditambah ke dalam media MS. Penambahan BAP pada kuantiti yang lebih tinggi telah meningkatkan pembentukan pucuk berbilang, namun pucuk yang terbentuk mempunyai daun yang sangat kecil. Pucuk-pucuk ini telah diinkubasi dalam media yang mengandungi GA3 dengan kepekatan antara 2.9 – 4.5 µM bagi meninggikan pucuk-pucuk tersebut. Pucuk-pucuk yang telah mencapai ketinggian yang sesuai telah diletakkan dalam media yang mengandungi kepekaan auxin yang berbeza bagi tujuan pengakaran. Bilangan akar yang paling tinggi telah didapati dalam media yang mengandungi 2µM IBA iaitu sebanyak 20 akar secara purata.

Pengkulturan eksplan daun di dalam media MS yang mengandungi NAA telah mempengaruhi pembentukan akar yang tebal dan pendek manakala penambahan IBA telah menyebabkan akar menjadi lebih halus dan panjang. Bilangan akar yang paling tinggi terbentuk dalam media yang mengandungi 5 µM NAA iaitu sebanyak 13 segmen akar. Setelah akar adventitious terbentuk, kultur ampaian akar telah berjaya dibangunkan dengan menggunakan media MS yang ditambah dengan sama ada 5 µM IBA atau NAA. Penambahan berat akar yang paling tinggi didapati apabila media MS ditambah dengan 5 µM NAA iaitu sebanyak 1 gram dalam masa sebulan.

Pelbagai usaha turut dilakukan untuk mengaruh pembentukan akar rerambut, iaitu dengan menggunakan pelbagai jenis strain A. rhizogenes serta cara melakukan eksplan yang berbeza-beza. Namun begitu, walaupun setelah 14 bulan dalam inkubasi, masih tiada
pembentukan akar rerambut dapat dilihat dari eksplan L. pumila sedangkan akar rerambut dari eksplan Nicotina tabacum telah terbentuk, di mana set A. rhizogenes yang sama telah digunakan bagi kedua-dua jenis tumbuhan.

Maka, bagi memahami mekanisme di sebalik interaksi antara mikrob dan hos semasa proses jangkitan, analisa terhadap sekumpulan gen vir yang bertanggungjawab terhadap proses interaksi, perpindahan dan integrasi segmen T-DNA telah dijalankan. Pengekspresan gen vir di dalam A. rhizogenes telah dikanji bagi membandingkan tumbuhan yang boleh dijangkiti dengan tumbuhan yang sukar dijangkiti. Pengekspresan gen virA dilihat bertambah apabila masa bertambah, membuktikan terdapat interaksi antara tumbuhan hos dan bakteria. Kehadiran virD2 juga bertambah dengan masa, menunjukkan besar kemungkinan bahawa T-DNA telah berjaya diproses untuk dibawa masuk ke dalam hos tumbuhan. Seterusnya, gen virD2 dan virB5 juga turut bertambah, berkadar langsung dengan masa, maka adalah dianggarkan bahawa laluan pengangkutan yang membolehkan T-DNA dipindah masuk ke dalam hos tumbuhan telah tersedia seterusnya meninggikan lagi kebarangkalian proses transformasi berlaku. Namun begitu, analisa terhadap hos tumbuhan setelah dua hari proses transformasi dilakukan, menunjukkan bahawa T-DNA tidak dapat dikesan, maka dianggarkan bahawa T-DNA mungkin telah hilang.
ACKNOWLEDGEMENTS

Alhamdulillah, all praises to Allah for the strengths and his blessing in guiding me to complete this thesis. Special thanks goes to my supervisor, Assoc. Prof. Dr. Norihan Mohd Saleh for her continuous support and for giving me the opportunity to pursue my studies. Her suggestions and advices had helped me through this journey.

I am also grateful beyond words to Dr. Mohd Puad Abdullah who has given me guidance and most valuable knowledge. His encouragement stimulated me to work in this project and his continued help during the research has been invaluable. My highest appreciation also goes to Dr. Kodi Isparan Kandasamy who despite his tight schedule, has managed to be a great help during the writing of this thesis and made many valuable suggestions.

Special thanks are extended to members of the plant tissue culture lab and genetic lab (Department of Cell and Biomolecular, UPM) for their opinions, advices and support. I would also like to thank the staff of plant tissue culture lab in FRIM for being kind and welcoming when I worked in the lab.

Last but not least, I wish to thank my family for loving me, all the constant support, words of encouragements and advices for the past few years.
APPROVAL

Approval Sheet No. 1

I certify that a Thesis Examination Committee has met on 10th October 2013 to conduct the final examination of Nita Azlin Jaafar on her thesis entitled "In vitro propagation and organ culture of Kacip Fatimah (Labisia pumila var. alata)" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the examination committee are as follows:

**Janna Ong Bt. Abdullah, PhD**
Associate Professor
Faculty of Biotechnology & Biomolecular Sciences
Universiti Putra Malaysia
(Chairman)

**Parameswari a/p Namasivayam, PhD**
Associate Professor
Faculty of Biotechnology & Biomolecular Sciences
Universiti Putra Malaysia
(Internal Examiner)

**Suhaimi B. Napis, PhD**
Associate Professor
Faculty of Biotechnology & Biomolecular Sciences
Universiti Putra Malaysia
(Internal Examiner)

**Y. Bhg. Normah Mohd Noor, PhD**
Professor
Pusat Pengajian Biosains & Bioteknologi
Universiti Kebangsaan Malaysia
Malaysia
(External Examiner)

-----------------------------------------------------------------

NORITAH OMAR, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 19 December 2013
This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Master of Science.

The members of the supervisory committee are as follows:

Norihan Mohd Saleh, PhD
Associate Professor
Department of Cell and Molecular Biology
Faculty of Biotechnology and Biomolecular Sciences
University Putra Malaysia
(Chairperson)

Mohd Puad Abdulah, PhD
Associate Professor
Department of Cell and Molecular Biology
Faculty of Biotechnology and Biomolecular Sciences
University Putra Malaysia

Kodi Isparan Kandasamy, PhD
Senior Vice President,
Business Development & Investment – Agriculture
Malaysian Biotechnology Corporation

______________________

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I declare that the thesis is my original work except for quotations and citations, which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Putra Malaysia or other institutions.

___________________________
NITA AZLIN JAAFAR

Date: 10 October 2013
# TABLE OF CONTENT

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iv</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vi</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xv</td>
</tr>
</tbody>
</table>

## CHAPTER

1 **INTRODUCTION**  

2 **LITERATURE REVIEW**  

2.1 Herbal Industry  

2.1.1 Kacip Fatimah (*Labisia pumila*)  

2.1.1.1 Plant Description and Distribution  

2.1.1.2 Ethnobotanical aspects of *L. pumila*  

2.2 *In vitro* plant propagation system  

2.2.1 Factors influencing *in vitro* system  

2.2.2 Plant Tissue Culture for the Production of Secondary Metabolites  

2.2.3 Hairy Root Culture  

2.2.3.1 *Agrobacterium rhizogenes*  

2.2.3.2 Application and prospect of root and hairy root culture  

3 **MATERIALS AND METHODS**  

3.1 Plant materials and maintenance  

3.2 Media preparation  

3.2.1 Plant tissue culture media  

3.2.1.1 Hairy Root Induction Media  

3.2.2 Microbial media  

3.3 *In vitro* propagation of *L. pumila* var. *alata*  

3.3.1 Induction of multiple shoot of *L. pumila* in response to different type and concentration of Plant Growth Regulators (PGRs)  

3.3.2 Elongation of the multiplied shoot  

3.3.3 *In vitro* rooting of *L. pumila* var. *alata* plantlet  

3.4 Adventitious root induction of *L. pumila* var. *alata*  

3.4.1 Induction of root
3.4.2 Establishment of adventitious root culture
3.5 Hairy root induction
  3.5.1 Bacterial strains
  3.5.2 Activation of bacterial strain
  3.5.3 Infection of wounded explants with A. rhizogenes culture
3.6 Isolation of genomic DNA and RNA from A. rhizogenes
  a) Isolation of genomic DNA from A. rhizogenes
  b) RNA extraction from A. rhizogenes culture
  3.6.1 Spectrophotomeric and electrophoretic analyses
3.7 Vir gene expression analyses
  3.7.1 Infection of wounded explants with A. rhizogenes culture
3.8 PCR analysis
  3.8.1 Primer design
  3.8.2 Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) of A. rhizogenes total RNA with vir genes specific primers
  3.8.3 Confirmation of transformation
    3.8.3.1 Isolation of genomic DNA from L. pumila var. alata and Nicotiana tabacum which had been exposed to A. rhizogenes
    3.8.3.2 PCR Analysis with TL-DNA Specific Primer
3.9 Data collection
  3.9.1 In vitro propagation of L. pumila
  3.9.2 Adventitious root induction of L. pumila
3.10 Statistical analysis

4 RESULTS AND DISCUSSIONS
4.1 In vitro propagation of L. pumila var. alata
  4.1.1 Induction of multiple shoot of L. pumila using different types and concentration of Plant Growth Regulators (PGRs)
    a) L. pumila var. alata response to MS media supplemented with cytokinin
    b) L. pumila var. alata response to MS media supplemented with combined auxin and cytokinin
  4.1.2 In vitro shoot elongation of L. pumila var. alata
  4.1.3 Induction of roots in (in vitro) L. pumila plantlets
4.2 Effect of auxins on adventitious root induction
4.3 Effects of auxins on root suspension
4.4 Hairy root induction of L. pumila
4.5 Vir gene expression analysis of A. rhizogenes
  4.5.1 Total RNA Extracted from the A.rhizogenes exposed to host plant at different duration
  4.5.2 Vir gene expression analysis of A. rhizogenes following co-cultivation with wounded L. pumila explants
4.6 Analysis of T-DNA presence in host plant
5 CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH

REFERENCES 67
APPENDICES 76