UNIVERSITI PUTRA MALAYSIA

CHARACTERIZATION AND PRIMARY RECOVERY OF FUNCTIONAL BIOACTIVE COMPOUNDS FROM EDIBLE BIRD’S NEST

LIM HONG KWONG

FSTM 2014 9
CHARACTERIZATION AND PRIMARY RECOVERY OF FUNCTIONAL BIOACTIVE COMPOUNDS FROM EDIBLE BIRD'S NEST

By

LIM HONG KWONG

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

June 2014
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
The edible bird’s nest (EBN) is a saliva-cemented nest built by swiftlets (Collocalia spp. /Aerodramus spp.) during the breeding season, and it is found predominantly in Southeast Asia. However, little is known or is published about EBN and no scientific and technological findings on recovering bioactive compounds from EBN. Therefore, this study was conducted to characterize the physico-chemical, rheological behavior properties and recover the functional bio-compounds derived from EBN. The application of an aqueous two-phase system (ATPS) strategy to the potential recovery of bio-compounds (sialoglycoproteins) from the EBN was evaluated. This study revealed that the amino acid composition of EBN-extract was significantly higher ($P < 0.05$) than that of intact EBN, with the exception of the methionine content. Overall, the most abundant amino acids in the chemical structure of EBN-extract were aspartic acid (9.80 %), serine (9.50 %), and proline (8.81 %). The hydrophilic glycoprotein in EBN-extract was a heavily glycosylated protein, and this result was further supported by the presence of two glycoprotein bands at 110 and 130 kDa, as observed by SDS-PAGE analysis. The non-Newtonian flow behavior of Collocalia mucoid (EBN-extract) dispersions indicated that all concentrations (5 – 100 mg/mL) of the mucoid dispersions exhibited shear-thinning behaviors, which could best be described using the Herschel-Bulkley model. As the concentration of Collocalia mucoid dispersions increased, the appearance of a plateau shear modulus indicated the dispersion was exhibiting more gel-like behaviors. The Collocalia mucoid dispersions were thought to involve the physical entanglement of network
formations, which were able to form weak gels at high concentrations. The effects of hydrophilic solvent in the ATPS and the system parameters on partition behavior were evaluated. The partitioning of the EBN sialoglycoprotein was pH-dependent. Slightly more than 97% of the total EBN sialoglycoproteins were recovered in the top phase of ATPS under selected conditions. According to this study, the ATPS technique provides a simple, efficient, and economic recovery process for sialoglycoproteins derived from EBN and EBN by-products for the food, nutraceutical, pharmaceutical, cosmetic, and other related industries. This ATPS separation technique has great potential to be carried over to an industrial scale.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk Ijazah Doktor Falsafah

PENCIRIAN DAN PEMULIHAN AWAL SEBATIAN BIO-AKTIF FUNGSIONAL DARIPADA SARANG BURUNG WALIT

Oleh

LIM HONG KWONG

Jun 2014

Pengerusi : Profesor Tan Chin Ping, PhD.
Fakulti : Sains dan Teknologi Makanan

Sarang burung walit (EBN) merupakan sarang burung yang dihasilkan daripada air liur burung walit (Collocalia spp. /Aerodramus spp.) semasa musim bertelur dan biasanya ditemui di Asia Tenggara. Walau bagaimanapun, hanya sedikit maklumat mengenai EBN telah diketahui atau diterbitkan dan tiada penemuan saintifik dan teknologi mengenai pemulihan sebatian bio-aktif daripada EBN. Justeru itu, kajian ini telah dijalankan untuk mencirikan sifat fiziko-kimia, kelakuan reologi dan pemulihan bio-sebatian fungsian yang diperolehi daripada EBN. Potensi penggunaan sistem akueus dua fasa (ATPS) strategi untuk pemulihan bio-sebatian (sialoglikoprotein) daripada EBN telah dinilai. Keputusan kajian ini menunjukkan bahawa komposisi asid amino daripada ekstrak EBN adalah lebih tinggi (P < 0.05) berbanding dengan EBN mentah, kecuali kandungan asid amino metionina. Secara keseluruhannya, kandungan asid amino dalam struktur kimia ekstrak EBN yang utama terdiri daripada asid aspartik (9.80 %), serin (9.50 %), dan prolin (8.81 %). Glikoprotein hidrofilik yang terdapat dalam ekstrak EBN adalah protein terglikosilat, dan keputusan ini turut disokong dengan kehadiran dua jalur glikoprotein pada 110 dan 130 kDa, seperti yang diperhatikan dalam analisis SDS-PAGE. Larutan lendir Collocalia (ekstrak EBN) yang berkelakuan aliran bukan “Newtonian” dan menunjukkan bahawa semua kepekatan (5 – 100 mg/mL) daripada larutan lendir mempamerkan tingkah laku yang ricuh penipisan yang dipadankan dengan model “Herschel-Bulkley”. Dengan peningkatan kepekatan larutan lendir Collocalia, kemunculan dataran modulus ricuh telah menunjukkan larutan tersebut lebih bersifat seperti gel. Keputusan ini
mencadangkan bahawa lendir *Collocalia* yang terlibat dalam pembentukan rangkaian secara fizikal yang akan menyebabkan larutannya bersifat gel yang lemah pada kepekatan yang tinggi. Kesan-kesan pelarut hidrofilik dalam sistem akueus dua fasa (ATP) dan beberapa parameter sistem terhadap tingkah laku pemisahan telah dinilai. Pemisahan sialoglikoprotein EBN adalah bergantung kepada pH. Lebih kurang 97 % daripada jumlah sialoglikoprotein EBN telah didapati dalam fasa atas ATPS di bawah keadaan yang terpilih. Kajian ini menunjukkan bahawa teknik ATPS merupakan satu proses pemulihan sialoglikoprotein daripada EBN dan hasil sampingan EBN yang mudah, berkesan, dan ekonomik untuk penggunaan dalam industri makanan, nutraceutikal, farmaceutikal, kosmetik, dan industri lain yang berkenaan. Teknik pemisahan ATPS ini amat berpotensi untuk dibawa ke skala industri.
ACKNOWLEDGEMENTS

There are no words can describe how grateful I am for all the supports that I have received throughout the years of my research and postgraduate study. First and foremost, I wish to express my love and gratitude to my family for their understanding, affectionate supports, and endless love throughout my studies. I’m indebted to them!

The journey of the PhD, a lengthy endeavour, would not have been possible without the help of many people. Among them, I was grateful to my supervisor, Prof. Dr. Tan Chin Ping, who was very helpful and offered constructive criticism during my study. His invaluable guidance, friendly support, and words of encouragement were essential in fulfilment of this task. I have benefited so much from him. It is privilege to express my thankfulness to my advisory committee, Prof. Dr. Ling Tau Chuan for enlightenment discussions and help during this study. Also, I wish to express my gratitude to my thesis committee member, Assoc. Prof. Dr. Faridah Abas for proofreading my thesis and her insightful comments about my research work.

It is pleasure to express my gratitude to Prof. Dr. Lai Oi Ming for her great support as well as allowing me to access the facilities in her lab. Also, I would like to show my deepest appreciation to Dr. Edward, who has helped me in so many ways in the early stage of my research. I will never forget his readiness to help and sincere personality. Sincere thanks to my GOOD friend, who always motivate me and made positive impacts on my life. I thank Ms. Joan and Ms. Wendy for providing me with all the samples needed for this research.

My special thanks to all staffs of Faculty of Food Science and Technology (FSTM) for allowing me to carry out the research work successfully in this faculty. I would also express my thanks to all the staffs of the administration office of Division of Postgraduate, Research and Innovation, FSTM for their kind help and supports during the course of the study. I cherish the memorable association with all my labmates for creating an inspiring, challenging, and unique working atmosphere to fulfil my task.

Last but not least, I sincerely thank the Ministry of Higher Education (MOHE), Malaysia for providing the financial support and also Research Management Centre, UPM, Malaysia for providing the research grant which enables this research to be carried out.
I certify that a Thesis Examination Committee has met on 18 Jun 2014 to conduct the final examination of Lim Hong Kwong on his thesis entitled “Characterization and Primary Recovery of Functional Bioactive Compounds from Edible Bird’s Nest” in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Badlishah Sham Baharin, MSc
Associate Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Chairman)

Russly Abdul Rahman, PhD
Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Internal Examiner)

Mohd Shamsul Anuar, PhD
Senior Lecturer
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

Chang Jo-Shu, PhD
Distinguished Professor
Department of Chemical Engineering
National Cheng Kung University
Taiwan
(External Examiner)

NORITAH OMAR, PhD
Associate Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 21 July 2014
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirements for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Tan Chin Ping, PhD
Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Chairman)

Faridah Abas, PhD
Associate Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Member)

Ling Tau Chuan, PhD
Professor
Faculty of Science
University of Malaya
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

Declaration by graduate student

I hereby confirm that:
- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012 – 2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: _______________________ Date: __________________

Name and Matric No.: _Lim Hong Kwong (GS 29269)
Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012 – 2013) are adhered to.

Signature: ___________________ Signature: ___________________
Name of Chairman of Supervisory Committee: _________________
Name of Member of Supervisory Committee: _________________

Signature: ___________________
Name of Member of Supervisory Committee: _________________
TABLE OF CONTENTS

ABSTRACT i
ABSTRAK iii
ACKNOWLEDGEMENTS vi
APPROVAL vii
DECLARATION viii
LIST OF TABLES xvi
LIST OF FIGURES xvii
LIST OF ABBREVIATIONS xx

CHAPTER

1 INTRODUCTION 1

2 LITERATURE REVIEW 7
 2.1 Edible bird's nest (EBN) 7
 2.1.1 Classification and habitat of the swiftlet 9
 2.1.2 Edible-nest swiftlet farming industry 12
 2.1.3 Edible-nest swiftlet farming in Malaysia 14
 2.1.4 The economic importance of EBNs 17
 2.1.5 EBN cleaning process 18
 2.1.6 Health benefits of EBNs 20
 2.1.7 EBN allergens 21
 2.2 Physico-chemical characterization of EBNs 22
 2.2.1 Rheology 24
 2.2.2 Viscosity 25
 2.2.3 Small-strain testing 29
 2.3 Extraction and purification of EBN protein and glycoprotein 32
 2.3.1 Protein, amino acids, and glycoprotein 33
 2.3.2 Recovery and extraction process 38
 2.3.3 Purification challenges 39
 2.4 Product recovery in biotechnology 41
 2.4.1 Aqueous two-phase system (ATPS) 41
 2.4.2 Phase diagram 43
 2.4.3 Classifying ATPSs 45
 2.4.4 Variable properties affect partitioning 48
 2.4.5 ATPS application 51
 2.5 Gel electrophoresis 53
 2.6 Fourier Transform Infrared (FTIR) spectroscopic analysis 53

3 CHARACTERIZATION OF GLYCOPROTEIN (WATER-SOLUBLE PROTEIN) DERIVED FROM THE FARMED EDIBLE BIRD'S NEST: ASSESSMENT OF AMINO ACID PROFILES, SDS-PAGE AND FTIR SPECTRA 56
 3.1 Introduction 56
 3.2 Materials and methods 58
 3.2.1 Materials and chemicals 58
 3.2.2 Preparation of EBN-extracts 58
 3.2.3 Amino acid analysis 59
3.2.3.1 Derivatization of amino acids with phenylisothiocyanate (PITC) 59
3.2.3.2 Chromatographic systems 60
3.2.4 Protein and glycoprotein concentration 60
3.2.5 Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis (SDS-PAGE) analysis 61
3.2.6 Glycoprotein carbohydrate estimation analysis 61
3.2.7 FTIR analysis 62
3.2.8 Statistical analysis 63
3.3 Results and discussion 63
3.4 Conclusion 72

4 RHEOLOGICAL AND FLOW BEHAVIOR OF EDIBLE BIRD'S NEST-EXTRACT (GLYCOPROTEIN)
4.1 Introduction 73
4.2 Materials and methods
 4.2.1 Materials and chemicals 75
 4.2.2 Collocalia mucoid (EBN-extract) preparation 75
 4.2.3 Rheological characterization 76
 4.2.4 Micromorphology observation 78
 4.2.5 Statistical analysis 78
4.3 Results and discussion
 4.3.1 Viscosity and flow behaviours 78
 4.3.2 Small deformation rheology 84
 4.3.3 Effect of temperature on the apparent viscosity 87
 4.3.4 Micromorphology appearance 89
4.4 Conclusion 91

5 GLYCOPROTEIN RECOVERY FROM EDIBLE BIRD’S NEST USING 2-PROPANOL/PHOSPHATE AQUEOUS TWO-PHASE SYSTEM
5.1 Introduction 92
5.2 Materials and methods
 5.2.1 Materials and chemicals 94
 5.2.2 Crude EBN-extracts preparation. 94
 5.2.3 Protein concentration 95
 5.2.4 Glycoprotein concentration 95
 5.2.5 SDS-PAGE analysis 96
 5.2.6 ATPS
 5.2.6.1 Partition experiments 96
 5.2.6.2 Determination of volume ratio, partition coefficient, selectivity, and yield 97
 5.2.7 Statistical analysis 98
5.3 Results and discussion
 5.3.1 Partition behaviour of EBN sample in selected ATPS 99
 5.3.2 Effect of pH in partitioning of EBN glycoprotein 103
 5.3.3 Effect of Sodium Chloride (NaCl) on EBN glycoprotein partitioning 105
 5.3.4 SDS-PAGE analysis of EBN glycoprotein from ATPS 107
5.4 Conclusion 111

xii
6 A SIMPLE AND RAPID TECHNIQUE FOR THE PRIMARY RECOVERY OF GLYCOPROTEINS FROM EDIBLE BIRD'S NEST BY-PRODUCT

6.1 Introduction 112
6.2 Experimental Materials and methods
 6.2.1 Materials and chemicals 114
 6.2.2 Crude EBN-extract 114
 6.2.3 ATPS
 6.2.3.1 Phase diagram 115
 6.2.3.2 Partition experiments 115
 6.2.3.3 Partition coefficient, selectivity, yield, and volume ratio 116
 6.2.4 Analytical methods
 6.2.4.1 Protein concentration assay 117
 6.2.4.2 Glycoprotein concentration assay 117
 6.2.4.3 SDS-PAGE analysis 118
 6.2.4.4 FTIR analysis 118
 6.2.5 Statistical analysis 119
6.3 Results and discussion
 6.3.1 Effect of the phase composition 119
 6.3.2 Effect of system’s pH 123
 6.3.3 Effect of neutral salt (NaCl) 125
 6.3.4 SDS-PAGE analysis of the EBN glycoprotein from ATPS 127
 6.3.5 FTIR analysis of the EBN glycoprotein from ATPS 131
6.4 Conclusion 133

7 CONCLUSION AND RECOMMENDATIONS 134

REFERENCES 139
BIODATA OF STUDENT 158
LIST OF PUBLICATIONS AND AWARDS 159