PRETREATMENT OF KENAF (Hibiscus cannabinus L.)
CORE FIBRE FOR FERMENTABLE SUGAR
AND LACTIC ACID PRODUCTION

NG SIM HONG

IPTPH 2012 3
PRETREATMENT OF KENAF (Hibiscus cannabinus L.)
CORE FIBRE FOR FERMENTABLE SUGAR
AND LACTIC ACID PRODUCTION

By

NG SIM HONG

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia,
in Fulfillment of the Requirement for the Degree of Master of Science

December 2012
Pre-treatment of kenaf (Hibiscus cannabinus L.) core fibre for fermentable sugar and lactic acid production

By

NG SIM HONG

December 2012

Chair: Professor Paridah Md Tahir, PhD

Institute: Tropical Forestry and Forest Products

Kenaf (Hibiscus cannabinus L.) core which is mainly used for low range products contains high cellulose content (46.9%) possesses great potential for fermentable sugar production. Kenaf core can be converted into lactic acid (LA) through enzymatic hydrolysis and fermentation process. However, pre-treatment is essential prior to enzymatic hydrolysis for higher fermentable sugar yield. In this study, three types of pre-treatments were applied: i) Physical pre-treatment (hammer milling, HM); ii) Physical and thermal pre-treatment (HMTH) iii) Physical and chemical pre-treatment (HMCH). The cellulase enzyme from Trichoderma reesei was used to hydrolyze the pre-treated kenaf core. Lactic acid bacteria, Lactobacillus delbrueckii, Lactococcus lactis NZ9000 and Lactococcus lactis MG 1363 were used for fermentation in batch cultivation for 24 hours using kenaf core hydrolysate. The chemical composition of kenaf core was analyzed according to TAPPI Standard.
methods and the concentration of fermentable sugar and LA yield was analyzed using HPLC.

The study showed that NaOH pre-treated kenaf core recorded the highest alpha cellulose content (91.5%) at >80 mesh among the pre-treatments. After hydrolysed by cellulose, NaOH pre-treated kenaf core generated the highest amount of glucose (11.64 g/L) compared to the untreated (40-60 mesh) kenaf core (0.04 g/L). In fermentation by *L. delbrueckii* using kenaf core hydrolysate prepared from 2.0 mL enzyme loading as a substrate, the highest lactic acid production with 11.80 g/L was obtained at 12th hour of cultivation with 2.86 g/L of cell growth. However, the maximum concentration of 12.78 g/L of lactic acid was obtained with 3.05 g/L of maximum cell growth at 24 hours of cultivation. *L. delbrueckii* recorded the highest cell efficiency to produce lactic acid at 4.24 g/g, and therefore, recorded the highest productivity at 0.533 g/L/h. The results show that NaOH pre-treated kenaf core is the most suitable pre-treatment to obtain the highest glucose yield by increasing the alpha cellulose content. Subsequently, *L. delbrueckii* is the most suitable lactic acid bacteria to produce lactic acid from kenaf core hydrolysates and can be used as a potential lactic acid bacteria for other lignocellulose bioconversion to lactic acid.

Keywords: kenaf core, enzymatic hydrolysis, glucose, fermentation, *Lactobacillus delbrueckii*, lactic acid
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

PRAPENGOLAHAN KENAF (Hibiscus cannabinus L.) SERAT TERAS UNTUK PENGHASILAN GULA TERFERMENTASI DAN ASID LAKTIK

Oleh

NG SIM HONG

Disember 2012

Pengerusi: Profesor Paridah Md Tahir, PhD

Institut: Perhutanan Tropika dan Produk Hutan

Bahagian teras Kenaf (Hibiscus cannabinus L.) yang biasanya digunakan untuk produk julat rendah sebernarnya mengandungi kandungan celulosa yang tinggi (47.7%) yang tinggi dan mempunyai potensi yang tinggi untuk pengeluaran gula terfermentasi. Bahagian teras kenaf boleh ditukar menjadi asid laktik melalui proses hidrolisis enzimatik dan fermentasi. Untuk penghasilan gula terfermentasi (glukosa) yang lebih tinggi, pra-rawatan perlu dilakukan sebelum proses hidrolisis enzimatik. Dalam kajian ini, tiga jenis pra-rawatan diterapkan: i) Pra-rawatan fizikal (HM); ii) pra-rawatan fizikal dan terma (HMTH) iii) pra-rawatan fizikal dan kimia (HMCH). Enzim selulosa dari Trichoderma reesei telah digunakan untuk menghidrolisis bahan kenaf teras selepas pra-rawatan. Bakteria asid laktik, Lactobacillus delbrueckii, Lactococcus lactis NZ9000 dan Lactococcus lactis MG 1363 telah digunakan untuk fermentasi yang berkelompok selama 24 jam. Kesaran pra-rawatan komposisi kimia pada teras kenaf dianalisis berdasarkan kaedah Piawai TAPPI dan kepekatan glukosa (g/L) serta asid laktik (g/L) yang terhasil telah dianalisis menggunakan HPLC.

Kajian ini menunjukkan bahawa, teras kenaf yang dipra-rawat dengan NaOH mencatatkan kandungan alfa selulosa tertinggi (91.5%) dengan >80 mesh saiz.
Selepas hidrolisi berenzim, teras kenaf yang dipra-rawat dengan NaOH menghasilkan glukosa tertinggi iaitu (11.63 g/L) manakala teras kenaf yang tidak dirawat (40-60 mesh) memberi hasil (0.04 g/L). Dalam fermentasi oleh *Lactobacillus delbrueckii* dengan glukosa yang didapati daripada 2.0 mL enzim, pengeluaran asid lactic yang tertinggi tercatat pada 11.80 g/L dan diperolehi pada jam ke-12 dengan 2.86 g/L pertumbuhan sel. Kepekatan maximum asid laktik sebanyak 12.78 g/L telah diperolehi pada jam ke-24 dengan 3.05 g/L pertumbuhan sel maximum. *Lactobacillus delbrueckii* telah mencatatkan kecekapan sel untuk menghasilkan asid laktik yang tertinggi pada 4.24 g/g dan, dengan ini, telah mencatatkan produktiviti tertinggi pada 0.533 g/L/h. Keputusan dalam kajian ini menunjukkan bahawa teras kenaf yang dipra-rawat dengan NaOH adalah prawatan yang paling sesuai untuk mendapatkan hasil glukosa yang tinggi dengan meningkatkan kandungan alfa selulosa. *Lactobacillus delbrueckii* adalah bakteria asid laktik yang paling sesuai bagi menghasilkan asid laktik daripada glukosa yang didapati daripada teras kenaf dan juga berpotensi digunakan untuk sumber lignoselulosa yang lain.

Kata kunci: bahan teras kenaf, hidrolisis enzimatik, glukosa, *Lactobacillus delbrueckii*, asid laktik
ACKNOWLEDGEMENTS

During this period, I received guidance, assistance and encouragement from my families, friends, supervisory committee and Institute of Tropical Forestry and Forest Products (INTROP) staff. With their help and support, I finally result a thesis which is richer and wider in scope. The list of all contributors is much too long to be included here. However, I wish to acknowledge several people. Special thank are due to Prof. Dr. Paridah Md Tahir, Prof. Dr. Luqman Chuah Abdullah and Assoc. Prof. Dr. Rosfarizan Mohamad for their tireless supervision and encouragement. I also would like to express my sincere appreciation to my husband Wong Thye Seang for his never-ending support, encouragement and patience throughout my study period. My friends Ms. Juhaidah, Ms. Hafiz, Ms. Janet Sayu Ling and Ms. Farina, Ms. Jovy and Mr. Palie from BioTech 3 have also been a source of encouragement for me, thank you very much! Sincere thanks to EPU for financial funding to support my research studied. Lastly I would like to dedicate my deepest gratitude to my family members for their support and encouragement and thank you Su God for all the blessing and guidance.
This thesis was submitted to the Senate of Universiti Pura Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Paridah Md. Tahir, PhD
Professor
Institute of Tropical Forestry and Forest Products
Universiti Putra Malaysia
(Chairman)

Luqman Chuah Abdullah, PhD
Professor
Faculty of Engineering
Universiti Putra Malaysia
(Member)

Rosfarizan Mohamad, PhD
Associate Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

NG SIM HONG
Date: 4 December 2012
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td></td>
<td>iv</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td></td>
<td>vi</td>
</tr>
<tr>
<td>APPROVAL</td>
<td></td>
<td>vii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td></td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td></td>
<td>xv</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Problem statement and justification</td>
<td>6</td>
</tr>
<tr>
<td>1.3</td>
<td>Objectives</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>LITERATURE REVIEW</td>
<td>9</td>
</tr>
<tr>
<td>2.1</td>
<td>Lignocellulosic materials for bioproducts</td>
<td>9</td>
</tr>
<tr>
<td>2.1.1</td>
<td>Chemical nature of lignocellulose</td>
<td>9</td>
</tr>
<tr>
<td>2.1.2</td>
<td>Biomass availability</td>
<td>13</td>
</tr>
<tr>
<td>2.1.3</td>
<td>Kenaf (Hibiscus cannabinus L.)</td>
<td>18</td>
</tr>
<tr>
<td>2.1.4</td>
<td>Chemical properties of kenaf</td>
<td>20</td>
</tr>
<tr>
<td>2.2</td>
<td>Production of biochemicals from biomass</td>
<td>20</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Pre-treatment technologies</td>
<td>21</td>
</tr>
<tr>
<td>2.2.1.1</td>
<td>Physical pre-treatment</td>
<td>26</td>
</tr>
<tr>
<td>2.2.1.2</td>
<td>Thermal pre-treatment</td>
<td>27</td>
</tr>
<tr>
<td>2.2.1.3</td>
<td>Chemical pre-treatment: acid and alkaline</td>
<td>27</td>
</tr>
<tr>
<td>2.2.1.4</td>
<td>Combination of pre-treatments</td>
<td>28</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Enzymatic hydrolysis</td>
<td>28</td>
</tr>
<tr>
<td>2.2.2.1</td>
<td>Cellulolytic enzyme</td>
<td>30</td>
</tr>
<tr>
<td>2.2.2.2</td>
<td>Cellulase from Trichoderma reesei</td>
<td>31</td>
</tr>
<tr>
<td>2.2.2.3</td>
<td>Limiting factors of enzymatic hydrolysis</td>
<td>31</td>
</tr>
<tr>
<td>2.2.3</td>
<td>Fermentation</td>
<td>32</td>
</tr>
<tr>
<td>2.2.3.1</td>
<td>Production of lactic acid</td>
<td>35</td>
</tr>
<tr>
<td>2.2.3.2</td>
<td>Lactic acid bacteria</td>
<td>38</td>
</tr>
<tr>
<td>3</td>
<td>MATERIALS AND METHODS</td>
<td>41</td>
</tr>
<tr>
<td>3.1</td>
<td>Experimental design</td>
<td>41</td>
</tr>
<tr>
<td>3.2</td>
<td>Chemicals and material used</td>
<td>42</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Chemicals</td>
<td>42</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Raw materials preparation</td>
<td>42</td>
</tr>
<tr>
<td>3.3</td>
<td>Chemical composition determination</td>
<td>43</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Cold water solubility determination</td>
<td>44</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Hot water solubility determination</td>
<td>44</td>
</tr>
</tbody>
</table>
3.3.3 Alcohol-acetone solubility 45
3.3.4 Acid insoluble lignin determination 45
3.3.5 Holocellulose determination 46
3.3.6 Alpha cellulose determination 46
3.3.7 Ash determination 47
3.4 Pre-treatment 48
3.4.1 Physical pre-treatment (hammer milling, HM) 48
3.4.2 Physical and thermal pre-treatment (HMTH) 48
3.4.3 Physical and chemical pre-treatment (HMCH) 49
3.5 Microscopic observations of pre-treated kenaf core particles 49
3.6 Kenaf core hydrolysates for lactic acid production 50
3.6.1 Preparation of kenaf core hydrolysates 50
3.6.2 Glucose concentration 50
3.7 Preparation of lactic acid from kenaf core hydrolysate 51
3.7.1 Inoculum preparation 51
3.7.2 Growth medium for lactic acid production (Fermentation) 52
3.8 Determination of cell concentration and lactic acid concentration 53
3.8.1 Determination of cell concentration 53
3.8.2 Lactic acid concentration 54
3.9 Statistical analysis 54

4 RESULTS AND DISCUSSION 56
4.1 Chemical constituents of kenaf core 56
4.2 Effect of pretreatment on kenaf core fibre 57
4.2.1 Effect of pre-treatment on chemical constituents of pre-treated of kenaf core 57
4.2.2 Effect of pre-treatments on the surfaces of kenaf core particles 60
4.3 Effect of kenaf core pre-treatment on fermentable sugar production 66
4.4 Production of lactic acid in batch cultivation of lactic acid bacteria using kenaf core hydrolysate 69
4.4.1 Lactobacillus delbrueckii 70
4.4.2 Lactococcus lactis NZ 9000 73
4.4.3 Lactococcus lactis 1363 75
4.4.4 Comparison of the growth performance of lactic acid bacteria in batch cultivation using kenaf core hydrolysate as a substrate 77

5 CONCLUSIONS AND RECOMMENDATIONS 82
5.1 Conclusions 82
5.2 Recommendation 83

REFERENCES 85
APPENDICES 92
BIODATA OF STUDENT 110
LIST OF PUBLICATIONS 111