

UNIVERSITI PUTRA MALAYSIA

ARCHITECTURAL DESIGN METRICS AS INDICATORS OF CHANGEABILITY OF COMPONENT-BASED SOFTWARE SYSTEMS

MAJDI ABDELLATIEF MOHAMMED MOHAMMED KHAIR

FSKTM 2012 30

ARCHITECTURAL DESIGN METRICS AS INDICATORS OF CHANGEABILITY OF COMPONENT-BASED SOFTWARE SYSTEMS

By

MAJDI ABDELLATIEF MOHAMMED MOHAMMED KHAIR

 \bigcirc

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Doctor of Philosophy

May 2012

DEDICATION

to:

My Mother, Your love is always with me no matter where I go. My Father, You enlighten me to do all right things and only the right, reminding me that there can be no gain without pain. My Brother, Your unconditional support is treasured for always. My wife, For all that you have been, for all that you are and will always be, I am grateful. Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Doctor of Philosophy

ARCHITECTURAL DESIGN METRICS AS INDICATORS OF CHANGEABILITY OF COMPONENT-BASED SOFTWARE SYSTEMS

By

MAJDI ABDELLATIEF MOHAMMED MOHAMMED KHAIR

May 2012

Chairman: Abu Bakar Md Sultan, PhD

Faculty: Computer Science and Information Technology

Component-based Software Development (CBSD) aims at designing and building a system using pre-existing components. CBSD is employed to reduce lifetime process, development costs and to increase the quality of the software. However, component-based software system (CBSS) developed by CBSD must be designed not only to meet the current customer requirements, but also to be receptive to future changes. Usually, designers may not know what the future state looks like. Thus, most often, one or more components of the system may need to be modified. This modification may be compromised by changing reusable software components, but perhaps the system architecture comprises components or interfaces that are difficult to change. The need for changeability keeps on increasing as technology evolves and there are changes that take place after a software system becomes operational, thus affecting maintenance routine. An essential method for managing and controlling such processes is to develop metrics as an indicator of changeability. Previous researches conducted on CBSD metrics have concentrated extensively on the assessment of complexity, reusability and dependency attributes for integration of software components. However, the literature still lacks appropriate metrics for measuring changeability attributes of component-based software system (CBSS). For this reason, the aim of this research was to propose measurements that allow designers to assess the changeability of CBSS architectures.

In this research, the relationships between components and size of components were considered as major factors affecting CBSS architectural design. Component information flow-based measures and multidimensional approach were used to handle each factor respectively. Three sets of metrics namely, Component Information Flow Complexity (CIFC), Component Coupling (CC), and Multidimensional Design Size Measures (MDSM) were proposed as indicators of changeability of CBSS architectural design. Two types of evaluation were used to validate the proposed approaches. While the theoretical validation study was conducted based on Briand's framework, the empirical validation study was tested under controlled experimental conditions based on eighteen components. Further study was also conducted to help the practical application of the proposed metrics.

The theoretical evaluation results indicated that the proposed metrics are theoretically sound and valid internal measures. The empirical results show that the proposed metrics have a positive statistical significant relationship with changeability attribute. The results of the application demonstrated the intuitiveness of the said approach. The overall results indicate that the proposed metrics can be used as indicators of changeability of CBSS architectural design. These measurements were proposed in the light of an extensive systematic literature review conducted by the researchers. Therefore, when the metrics are used in the context, we believe that the results of the metrics will be quite rich in identifying some architectural design problems. The results obtained from the theoretical and empirical evolution of the proposed metrics are of great significance and worth consideration for further research in the field. Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

PENGUKURAN REKABENTUK SENIBINA INDIKATOR KEBOLEHUBAHAN SISTEM PERISIAN BERASAS KOMPONEN

Oleh

Majdi Abdellatief Mohammed

Mei 2012

Pengerusi: Abu Bakar Md Sultan, PhD

Fakulti:Sains Komputer dan Teknologi Maklumat

Pembangunan sistem berasaskan komponen (CBSD) bermatlamat mereka bentuk dan membina sistem menggunakan komponen sedia wujud. CBSD dipakai untuk mengurangkan masa proses pembangunan, mengurangkan kos dan meningkatkan kualiti perisian. Bagaimanapun sistem yang dibangunkan oleh CBSD bukan saja perlu memenuhi keperluan pengguna semasa tetapi juga boleh menerima perubahan dimasa hadapan. Biasanya pereka sistem tidak boleh meramal perubahan masa depan yang mungkin berlaku. Oleh itu, kebiasaannya beberapa komponen mungkin perlu diubah dimasa hadapan. Perubahan ini boleh berlaku dengan mengubah komponen perisian guna semula, tetapi mungkin komponen senibina sistem atau antaramuka sukar diubah. Keperluan untuk kebolehubahan semakin meningkat bila berlaku perubahan teknologi dan rutin senggaraan yang dijalankan selepas sistem dilaksanakan. Kaedah yang sesuai untuk mengurus dan mengawal proses-proses seperti ini adalah membangunkan metrik yang secara extensive menjurus untuk menilai kekompleksan, kebolehgunaan semula dan pengantungan atribut-atribut untuk mengintegrasikan komponen perisian. Bagaimanapun, masih kekurangan literatur berkaitan metrik bersesuaian untuk mengukur kebolehubahan atribut Sistem perisian berasaskan komponen (CBSS). Atas sebab ini, matlamat penyelidikan ini adalah mengusulkan pengukuran yang membolehkan pereka-pereka untuk menilai kebolehubahan senibina CBSS.

Dalam penyelidikan ini, hubungan antara komponen-komponen dan saiz komponen dipertimbangkan sebagai faktor utama yang memberikan kesan ke atas rekaan senibina. Pengukuran berasaskan aliran maklumat dan pendekatan pelbagai dimensi digunakan untuk mengurus setiap satu faktor berkaitan. Tiga set metrik iaitu Kekompleksan Aliran Maklumat Komponen (CIFC), Padanan Komponen (CC), dan Pengukuran Saiz Rekabentuk Pelbagai Dimensi (MDSM) diusulkan sebagai petunjuk kebolehubahan rekabentuk senibina CBSS. Dua jenis penilaian telah digunaka untuk mengesahkan kaedah yang diusulkan. Sementara kajian pengesahan secara teori dijalankan berasaskan rangka kerja Brian, Kajian pengesahan empirikal diuji dalam persekitaran terkawal terhadap lapan belas komponen. Kajian lanjutan juga dilakukan untuk membantu aplikasi praktikal ke atas metrik yang diusulkan. Keputusan penilaian teoritikal menunjukkan metrik yang diusul adalah pengukuran dalaman yang sah. Keputusan empirikal selari dan memaparkan metrik yang diusul mempunyai hubungan statistik yang signifikan dengan atribut kebolehubahan. Keputusan aplikasi mengambarkan keberkesanan kaedah yang dinyatakan. Keputusan keseluruhan menunjukkan metrik yang diusulkan boleh digunakan sebagai petunjuk kebolehubahan ke atas rekabentuk senibina CBSS. Pengukuran ini diusulkan selari dengan sorotan bersistematik literatur yang dijalan oleh penyelidik. Oleh itu, bila metrik digunakan mengikut konteks, kita percaya keputusan metrik boleh mengenalpasti pelbagai masalah rekabentuk senibina. Keputusan yang diperolehi secara teoritikal dan evolusi empirikal oleh metrik yang diusul adalah signifikan dan boleh dijadikan kajian lanjutan yang berfaedah.

ACKNOWLEDGEMENTS

In the name of ALLAH, the Beneficent, the Compassionate, and who always gives me strength and patience to complete my duties through many challenges situations.

Many thanks to the Technical Education Corporation, Ministry of higher Education, Sudan, for providing me with a scholarship to pursue a PhD degree. My deepest appreciation and thanks to our much-respected leader, Dr. Salah Eldeen Elkhliefa.

Next, I would like to express my deep thanks to the research committee led by Assoc. Prof. Dr. Abu Bakar, Prof. Azim and Dr. Marzanah. Your time, support and advice have been precious to me. I am especially grateful to Prof. Azim for his fruitful discussions, helpful criticisms, patience and invaluable suggestions to this research. I am deeply indebted to him for guiding me with his extensive knowledge and logical way of thinking. This thesis would never have become possible without him. I am also indebted to Dr. Abu Bakar who was immensely helpful in facilitating the data that I needed for validating the proposed work.

In particular, I would like to thanks Prof. Barbra Kitchenham, the author of *Systematic Literature Review in Software Engineering* for her ideas, comments and suggestions towards my PhD research. She significantly contributed to

my research by proof reading, reviewing and providing excellent suggestions (i.e., Figure 2.1 and Section 2.4.5) and other suggestions for limitations overlooked at various levels during this research period, leading this research to its successful completion. The way she helped me in my research will always be appreciated and remembered. The prize for keeping this research practical should also go to the anonymous reviewers of *Journal of System and Software* for their constructive and practical feedback. I would also like to thank all those researchers whose works have been cited.

With a deep sense of belonging, I would like to thank my fellows in the Department of Computer Science, MTC College, Technical Education Corporation, Sudan. Special thanks also are due to my friend, Abubaker Wahaballah for his help in various ways.

Last but by no means least, it has been a privilege for me to study at the Department of Software Engineering at University Putra Malaysia, where the excellent environment to perform this research was provided. I am also thankful to my fellows at the Faculty of Computer Science for making my stay interesting and enjoyable.

> Majdi Abdellatief, May 2012

I certify that a Thesis Examination Committee has met on 21. May 2012 to conduct the final examination of Majdi Abdellatief Mohammed Mohammed Kair on his thesis entitled "Architectural Design Measures as Indicators of Changeability of Component-based Software System" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The committee recommends that the student be awarded the degree of Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Md. Nasir Sulaiman, PhD

Associate Professor, Faculty of Computer Science and Information Technology University Putra Malaysia (Chairman)

Mohd Hassan Selamt, PhD

Associate Professor, Faculty of Computer Science and Information Technology University Putra Malaysia (Internal Examiner)

Rodziah Atan, PhD

Associate Professor, Faculty of Computer Science and Information Technology University Putra Malaysia (Internal Examiner)

Volker Gruhn, Dr. rer. nat. Professor,

Paluno – The Ruhr Institute for Software Technology, Institute for Informatics, University of Duisburg-Essen, Germany. (External Examiner)

SEOW HENG FONG, PhD

Professor and Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date:

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Abu Bakar Md Sultan, PhD

Associate Professor Faculty of Computer Science and Information Technology Universiti Putra Malaysia. (Chairman)

Abdul Azim Abdul Ghani, PhD

Professor Faculty of Computer Science and Information Technology Universiti Putra Malaysia. (Member)

Marzanah A.Jabar,PhD

Senior Lecturer Faculty of Computer Science and Information Technology Universiti Putra Malaysia. (Member)

BUJANG BIN KIM HUAT, PhD

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date:

DECLARATION

I declare that the thesis is my original work except for quotations and citations that have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

TABLE OF CONTENTS

			Page					
1	DEDICATIC	IN	i					
_	ABSTRACT							
-	ABSTRAK							
1	ACKNOWLI	EDGEMENTS	viii					
1	APPROVAL							
1	DECLARAT	ION	xii					
I	LIST OF TAI	BLES	xvi					
1	LIST OF FIG	URES	xvii					
I	LIST OF API	PENDICES	xviii					
]	LIST OF ABI	BREVIATIONS	xix					
(CHAPTER							
1	1 INTRO	ODUCTION	1					
	1.1	Overview	1					
	1.2	Background	1					
	1.3	Problem Statement	4					
	1.4	Research Objectives	5					
	1.5	Scope of the Thesis	7					
	1.6	Contribution of the Thesis	10					
	1.7	Organization of the Thesis	13					
2	2 LITER	ATURE REVIEW	15					
	2.1	Introduction	15					
	2.2	Component-based Software Engineering	16					
		2.2.1 Software Components	17					
		2.2.2 The CBSE Process	18					
		2.2.3 Software Component Technology	18					
	2.3	Elements in Software Components	19					
		2.3.1 Interfaces	21					
		2.3.2 Interface Methods	21					
		2.3.3 Property	22					
		2.3.4 Event	22					
		2.3.5 Signatures	23					
	2.4	Measurement in Component-based Software Engineering	23					
		2.4.1 The Need for CBSE Specific Metrics	24					
		2.4.2 CBSE Specific Metrics	25					
	2.5	Approaches in Component-based Software System	26					
		2.5.1 Internal Structural-based Metrics	27					
		2.5.2 High-level Design-based Metrics	30					
		2.5.3 Specification-based Metrics	31					
	2.6	Intormation Flow Complexity	33					

	2.7	Coupling Measurement	34
	2.8	Size Measurement	35
	2.9	Changeability Measurement	37
	2.10	Limitations of the Current Approaches	39
3	RESE	ARCH METHODOLOGY	41
	3.1	Introduction	41
	3.2	Literature Review's Method	43
		3.2.1 Protocol Development	44
		3.2.2 Research Questions and Motivation	44
		3.2.3 Search Process	46
		3.2.4 Inclusion and Exclusion Criteria	47
		3.2.5 Quality Assessment Questions of Primary Studies	48
		3.2.6 Data Extraction	51
		3.2.7 Data Analysis	52
	3.3	Identification of Measurement Attributes	54
		3.3.1 Internal Attribute Measurement	55
		3.3.2 External Attributes Measurement: Changeability	
		Assessment	56
	3.4	Proposed Component Information Flow Framework	57
	3.5	Proposed Measures for CBSS Architectural Design	57
		3.5.1 Proposed Component Information Flow	
		Complexity	57
		3.5.2 Proposed Component Coupling Metric	58
		3.5.3 Proposed Multidimensional Design Size Metric	58
	3.6	Validation of the Proposed Metrics	59
		3.6.1 Theoretical Validation of the Proposed Metrics	59
		3.6.2 Empirical Validation of the Metrics	61
	3.7	Summary	74
4	PROI	POSED ARCHITECTURAL DESIGN METRICS	76
	4.1	Introduction	76
	4.2	Identification of Measurement Attributes	76
	4.3	Proposed Component Information Flow Framework	79
		4.3.1 CIF Framework	79
		4.3.2 Mapping CIF Concept to a Complete Flow Structure	re81
		4.3.3 CIF Definitions	83
		4.3.4 CIF Supports	85
	4.4	Definitions of Measures for CBSS Architectural Design	86
		4.4.1 Proposed Component Information Flow	
		Complexity	86
		4.4.2 Proposed Component Coupling	88
		4.4.3 Proposed Multidimensional Design Size Metric	92
	4.5	Summary	99

	5	5 THEORETICAL VALIDATION AND APPLICABILITY OF THE						
		PROP	OSED METRICS	100				
		5.1	Introduction	100				
		5.2	Briand's Generic Measurement Framework	101				
			5.2.1 Proposed Metrics Evaluation and Discussion	103				
			5.2.2 Summary of Results	107				
		5.3	An Application of the Proposed Metrics	108				
			5.3.1 Overview of CBSSs Considered	109				
			5.3.2 Application Goal Definition	110				
			5.3.3 Data Collection	110				
			5.3.4 Data Analysis Technique	111				
			5.3.5 Results and Discussion	113				
		5.4	Summary	118				
	6	EMPIF	RICAL ANALYSIS OF PROPOSED METRICS	120				
		6.1	Introduction	120				
		6.2	Main Experiment	120				
		6.3	Subjects' Background	122				
		6.4	Analysis	123				
			6.4.1 Measurement of Data for the Independent Variabl	e124				
			6.4.2 Measurement of Data for the Independent Variabl	e124				
			6.4.3 Correlation Results	126				
		6.5	Discussion	130				
			6.5.1 Evaluation of Results	130				
			6.5.2 Threats to Validity	133				
		6.6	Summary	136				
	_							
	7	CONC	LUSION AND FUTURE WORK	138				
		7.1	Conclusion	138				
		7.2	Directions for Future Works	140				
			7.2.1 Developing CASE tools	140				
			7.2.2 Further Experimentation on the Proposed Metrics	140				
			7.2.3 Extend and Improve the Precision of Existing	1 4 1				
			Metrics	141				
	DEFE	DENIOE	C.	140				
	KEFEI	NDICE	5	142				
	ALLE		J E CTUDENIT	101 176				
		170 177						
	rudl	ICAIR	21N3	1//				