

UNIVERSITI PUTRA MALAYSIA

ASSESSMENT OF THE DISTRIBUTION PROFILE OF LIGHT NONAQUEOUS PHASE LIQUID IN UNSATURATED ZONE UNDER THE INFLUENCE OF RAINFALL RECHARGE

SAMIRA ALBATI BINTI KAMARUDDIN

FPAS 2012 18

ASSESSMENT OF THE DISTRIBUTION PROFILE OF LIGHT NON-AQUEOUS PHASE LIQUID IN UNSATURATED ZONE UNDER THE INFLUENCE OF RAINFALL RECHARGE

By

SAMIRA ALBATI BINTI KAMARUDDIN

C

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

July 2012

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Doctor of Philosophy

ASSESSMENT OF THE DISTRIBUTION PROFILE OF LIGHT NON-AQUEOUS PHASE LIQUID IN UNSATURATED ZONE UNDER THE INFLUENCE OF RAINFALL RECHARGE

By

SAMIRA ALBATI BINTI KAMARUDDIN

July 2012

Chair: Associate Professor Wan Nor Azmin bin Sulaiman, PhD

Faculty: Environmental Studies

Leaking from underground storage and surface spills of hydrocarbon sources can cause serious light non-aqueous phase liquid (LNAPL) contamination in subsurface environments. In real conditions, the multiphase flow during LNAPL migration can be affected by rainfall recharge. To consider this, a study was carried out to investigate the distribution of LNAPL migration in the unsaturated zone through qualitative and quantitative experiments, as well as numerical simulations. Both qualitative and quantitative experiments utilized light reflection method (LRM) for NAPL saturation imaging technique.

In the qualitative experiment, the image analysis used conventional calibration relationship to determine the distribution profile of LNAPL in a 2-D model. The penetration depth of benzene and toluene after 24 h of injection initiated was 37.0 cm and 33.4 cm, respectively. At the same time, the toluene plume occupied larger area (30.7%) compared to benzene plume (25.2%). The benzene moved deeper as

expected due to the lower retardation factor, R and higher water solubility compared to toluene. More benzene was volatilized because its vapor pressure is higher than toluene. The differences showed that the chemical properties of the LNAPL source have considerable influence on their transport mechanism through porous media. Rainfall recharge showed minimal effects to benzene and toluene distribution due to its volatilization mechanism in porous media. In the quantitative experiment, multispectral imaging technique was applied to develop reliable image analysis. The average optical density (OD) from the captured images of samples containing twofluid phase and three-fluid phase systems were analyzed to obtain the water and LNAPL saturation (S_w and S_o). The R^2 results vary from 0.766 to 0.986 for the average OD and fluid saturation linear relationship. The distribution assessment of the LNAPL (isoparaffin liquid) showed that it was easily mobilized downward by the rainfall recharge. The recharge significantly reduced the LNAPL saturation at the upper part of capillary interface. At the lower interface, lens of LNAPL was observed to form higher S_0 and tends to flow horizontally towards the water wells. This evaluation showed that rainfall recharge has significant effect on the LNAPL distribution.

The LNAPL spill containing benzene, which has similar properties to the one tested in the qualitative experiment was simulated using the MOFAT program. Simulations were performed for three different spill sites in a 2-D model domain. The results showed that different locations of spill site produced different shapes and levels of oil saturation contours. The predicted maximum oil saturation for the edge spillage and center spillage were 0.38 and 0.43, respectively. The distribution of oil saturation during LNAPL redistribution was influenced by the direction of the slope of water table. The spill that occurred at the upper stream tends to create LNAPL lens along the groundwater surface if the higher LNAPL content was capable to move deeper reaching the groundwater level. Generally, 1 m³ of oil spill containing 10.5% of benzene resulted in water and gas concentration ranging up to 183 g m⁻³ and 43 g m⁻³, respectively. The distribution of concentration of water- and gas-phase was largely influenced by the direction of groundwater flow towards the lower water gradient.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

TAKSIRAN PROFIL AGIHAN CECAIR RINGAN FASA BUKAN AKUES DALAM ZON TAK TEPU DI BAWAH PENGARUH IMBUHAN HUJAN

Oleh

SAMIRA ALBATI BINTI KAMARUDDIN

Julai 2012

Pengerusi: Profesor Madya Wan Nor Azmin Sulaiman, PhD

Fakulti: Pengajian Alam Sekitar

Kebocoran dari simpanan bawah tanah dan tumpahan permukaan sumber hidrokarbon boleh menyebabkan pencemaran serius cecair ringan fasa bukan akues (LNAPL) dalam persekitaran subpermukaan. Dalam keadaan sebenar, aliran berbilang fasa semasa pergerakan LNAPL boleh dipengaruhi oleh imbuhan hujan. Untuk mempertimbangkan ini, satu kajian telah dijalankan untuk menyiasat agihan pergerakan LNAPL dalam zon tak tepu melalui ujikaji kualitatif dan kuantitatif, serta simulasi berangka. Kedua-dua ujikaji kualitatif dan kuantitatif menggunakan kaedah pantulan cahaya (LRM) untuk teknik pengimejan ketepuan NAPL.

Dalam ujikaji kualitatif, analisis imej menggunakan hubungan tentukuran lazim untuk menentukan profil agihan LNAPL dalam model 2-D. Kedalaman penembusan benzene dan toluene selepas 24 j suntikan dimulakan ialah masing-masing 37.0 cm dan 33.4 cm. Pada masa yang sama, kepulan toluene mengambil kawasan yang lebih besar (30.7%) berbanding kepada kepulan benzene (25.2%). Benzene bergerak lebih dalam seperti yang dijangka disebabkan oleh faktor perencatan, *R* yang lebih rendah

dan kelarutan air yang lebih tinggi berbanding toluene. Benzene lebih meruap kerana tekanan wap adalah lebih tinggi daripada toluene. Perbezaan ini menunjukkan bahawa sifat kimia sumber LNAPL mempunyai pengaruh yang besar ke atas mekanisme pergerakannya melalui media berliang. Imbuhan hujan menunjukkan kesan yang minimum kepada agihan benzene dan toluene disebabkan mekanisme pemeruapan dalam media berliang. Dalam ujikaji kuantitatif, teknik pengimejan "multispectral" telah digunakan untuk membangunkan analisis imej yang boleh dipercayai. Purata ketumpatan optik (OD) daripada imej sampel yang diambil, yang mengandungi sistem fasa dua bendalir dan fasa tiga bendalir dianalisis untuk mendapatkan ketepuan air dan LNAPL (S_w dan S_o). Keputusan R^2 berbeza antara 0.766 hingga 0.986 untuk hubungan linear purata OD dan ketepuan cecair. Taksiran agihan LNAPL (cecair isoparaffin) menunjukkan bahawa ia mudah digerakkan ke bawah oleh imbuhan hujan. Imbuhan itu mengurangkan ketepuan LNAPL pada bahagian atas antara muka kapilari dengan ketara. Pada antara muka yang lebih rendah, kanta LNAPL terbentuk dengan S_0 yang lebih tinggi dan cenderung mengalir secara mengufuk ke arah telaga air. Penilaian ini menunjukkan bahawa imbuhan hujan mempunyai kesan ketara ke atas agihan LNAPL.

Tumpahan LNAPL yang mengandungi benzene, yang mempunyai ciri-ciri yang sama dengan yang diuji dalam ujikaji kualitatif telah disimulasi menggunakan program MOFAT. Simulasi telah dijalankan untuk tiga tapak tumpahan yang berbeza dalam satu domain model 2-D. Hasil kajian menunjukkan bahawa lokasi tapak tumpahan yang berlainan menghasilkan bentuk dan tahap kontur ketepuan minyak yang berbeza. Ketepuan maksimum minyak yang diramalkan bagi tumpahan di pinggir dan tumpahan di tengah adalah masing-masing 0.38 dan 0.43. Agihan

ketepuan minyak semasa pengagihan semula LNAPL tertakluk kepada arah cerun aras air. Tumpahan yang berlaku di hulu aliran cenderung untuk membentuk kanta LNAPL sepanjang permukaan air bawah tanah jika kandungan LNAPL yang lebih tinggi mampu berpindah lebih dalam hingga ke aras air bawah tanah. Secara umumnya, 1 m³ tumpahan minyak yang mengandungi 10.5% benzene menyebabkan kepekatan fasa air dan gas masing-masing sehingga 183 g m⁻³ dan 43 g m⁻³. Agihan kepekatan fasa air dan gas sebahagian besarnya dipengaruhi oleh air bawah tanah yang mengalir ke arah kecerunan air yang lebih rendah.

ACKNOWLEDGEMENTS

It is my great fortune to have Associate Professors Dr. Wan Nor Azmin Sulaiman, Dr. Mohamad Pauzi Zakaria and Dr. Norhan Abd Rahman as my supervisory committee during this study. They have guided me patience, encouragement, advice and support to successfully complete this endeavor.

I deeply thank to my main supervisor Dr. Wan Nor Azmin for his never ending support. Whenever I walked into his office, he is always there to help me solve my problems by instantly coming up with suggestions to keep my research continues. My special thanks go to Dr. Norhan for his outstanding support over the past years in all of my academic pursuits. His advice and support to initiate the experimental and numerical simulations were highly appreciated.

My appreciation extends to Associate Professor Dr. Mushairry Mustaffar at Universiti Teknologi Malaysia (UTM) and Dr. Mustafa Bob at Taibah University, Madinah for their helpful suggestion and advice in performing the image acquisition and processing for quantification of NAPL saturation.

I would like to acknowledge the Faculty of Environmental Studies, Universiti Putra Malaysia (UPM) and Faculty of Civil Engineering, UTM for providing laboratory space and assistance to conduct the LNAPL experiments. I am grateful to the Ministry of Higher Education of Malaysia (MOHE) and UTM for providing the study leave scholarships. The financial for the laboratory and numerical simulations mostly supported by the Science Fund from the Ministry of Science, Technology and Innovation of Malaysia (MOSTI) and the Fundamental Research Grant Scheme (FRGS) from the MOHE.

Many thanks go to Radzuan for helping with the image acquisition and processing, and Arfendi, Ashrul, Rosmawati, Hidayah, Sheila, Su Kong and Aszuan for the helps towards the completion of experimental works. And also these thanks go to all my friends in UPM and UTM especially Badriyah, Siti Aishah, Hafiz, Rozie and Mohamad for their friendship support.

Lastly, this study is dedicated to my beloved husband, Mohd Shaifuddin, and my children Muhammad Nawfal and Nawal Maisarah for their constant love, never ending support, encouragement and understanding throughout this endeavor.

I certify that a Thesis Examination Committee has met on 16 July 2012 to conduct the final examination of Samira Albati binti Kamaruddin on her thesis entitled "Assessment of the Distribution Profile of Light Non-aqueous Phase Liquid in Unsaturated Zone Under the Influence of Rainfall Recharge" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Shaharin bin Ibrahim, PhD

Associate Professor Faculty of Environmental Studies Universiti Putra Malaysia (Chairman)

Puziah bt Abdul Latif, PhD

Associate Professor Faculty of Environmental Studies Universiti Putra Malaysia (Internal Examiner)

Mohd Razman bin Salim, PhD

Professor Faculty of Civil Engineering Universiti Teknologi Malaysia (External Examiner)

Takeshi Katsumi, PhD

Professor Kyoto University Japan (External Examiner)

SEOW HENG FONG, PhD

Professor and Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date:

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Wan Nor Azmin Sulaiman, PhD

Associate Professor Faculty of Environmental Studies Universiti Putra Malaysia (Chairman)

Mohamad Pauzi Zakaria, PhD

Professor Faculty of Environmental Studies Universiti Putra Malaysia (Member)

Norhan Abd Rahman, PhD

Associate Professor Faculty of Civil Engineering Universiti Teknologi Malaysia (Member)

BUJANG BIN KIM HUAT, PhD Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date:

TABLE OF CONTENTS

	Page
ABSTRACT	ii
ABSTRAK	V
ACKNOWLEDGEMENTS	viii
APPROVAL	Х
DECLARATION	xii
LIST OF TABLES	xvi
LIST OF FIGURES	xviii
LIST OF APPENDICES	xxiii
LIST OF ABBREVIATIONS	xxiv
NOTATIONS	xxvi

CHAPTER

CHA	PTER		
1	INTR	ODUCTION	1
	1.1	Background	1
	1.2	Problem Statement and Significance of Study	3
	1.3	Research Objectives	6
	1.4	Scope of Study	6
	1.5	Outline of Thesis	8
2	LITE	RATURE REVIEW	11
	2.1	Introduction	11
	2.2	Fate and Transport of LNAPL	13
		2.2.1 Volatilization	14
		2.2.2 Dissolution	15
		2.2.3 Adsorption	15
		2.2.4 Biodegradation	16
	2.3	Laboratory Experiment and Numerical Simulations	16
		2.3.1 Laboratory Setup in Qualitative and Quantitative	16
		2.3.2 Saturation Imaging Techniques using Photographic	24
		Methods	
		2.3.3 Multiphase Flow and the Constitutive Relationships	29
		2.3.4 Previous Numerical Studies of LNAPL	37
	2.4	Analysis and Visualization Techniques	38
		2.4.1 Analysis of Simulations	39
		2.4.2 Visualization Techniques and Tools	40
	2.5	Summary and Future Research	41
3	OUA	I ITATIVE EVDEDIMENTS USING IMAGE ANALVSIS	13
5	FOR	LNAPL UNDER THE INFLUENCE OF RAINFALL	чJ
	RECI	HARGE	
	3.1	Introduction	43
	3.2	Materials and Methods	45
	-	3.2.1 Two-Dimensional Laboratory Model	45
		3.2.2 Porous Media	48
		3.3.3 LNAPL and Properties	49

3.3.3 LNAPL and Properties

	3.2.	4 Rainfall Simulator	50
	3.2.	5 Image Acquisition and Analyses	51
	3.3 Res	ults and Discussion	58
	3.3.	1 Toluene Migration in Shakedown Test	59
	3.3.	2 Infiltration and Distribution of Benzene and Toluene	64
		before the Rainfall Recharge	
	3.3.	3 Distribution of Benzene and Toluene under the	72
		Influence of Rainfall Recharge	
	3.4 Cor	clusion	79
4	CALIBRA	TION OF IMAGE ANALYSIS TECHNIQUE FOR	81
	OUANTIT	ATIVE LNAPL EXPERIMENT	
	4.1 Intro	oduction	81
	4.2 Mat	erials and Methods	85
	4.2.	1 Porous Medium	85
	4.2.	2 LNAPL Source	87
	4.2.	3 Samples for Multifluid Phase Systems	89
	4.2.	4 Image Acquisition Procedure	91
	4.2.	5 Image Analysis Technique	94
	4.3 Res	ults and Discussion	99
	4.3.	1 Porosity of Porous Medium	99
	4.3.	2 Average OD-Saturation Relationship in Two-Fluid	101
		Phase System	
	4.3.	3 Average OD-Saturation Relationship in Three-Fluid	103
		Phase System	
	4.3 <mark>.</mark>	4 Fluid Saturation Solution for Multiphase Flow with	104
		Rainfall Recharge	
	4.4 Con	clusion	107
5	EVALUA	CION OF LNAPL INFILTRATION AND	108
	REDISTR	IBUTION UNDER THE INFLUENCE OF	
	RAINFAL	L RECHARGE BY IMAGE ANALYSIS	
	5.1 Intr	oduction	108
	5.2 Mat	erials and Methods	109
	5.2.	1 Experimental Setup	109
	5.2.	2 LNAPL Injection	117
	5.2.	3 Rainfall Simulator	119
	5.2.	4 Water and NAPL Pressure Measurement	119
	5.2.	5 Fluid Content Measurement	121
	5.2.	6 Image Acquisition and Analyses	123
	5.3 Res	ults and Discussion	127
	5.3.	1 Infiltration and Redistribution of LNAPL	127
	5.3.	2 Infiltration and Redistribution of LNAPL under the	133
		Influence of Rainfall Recharge	
	5.3.	3 Water and LNAPL Pressure	138

	5.3.4	Water	Content,	Temperature	and	Electrical	142
5.	4 Concl	usion	uvity				146
6 S I		ON OF I	NAPI SPI	LIS IN THE I	INSAT	URATED	148
	ONE USIN	IG MOF	AT PROGR	AM		UNATED	140
6.	1 Introd	luction					148
6.	2 Mater	ials and N	Aethods				152
	6.2.1	Mathem	atical Form	ulation			152
	6.2.2	MOFAT	Г Numerical	Model			153
	6.2.3	Model A	Assumption a	and Limitation			154
	6.2.4	LNAPL	Simulations	5			155
6.	4 Resul	ts and Dis	scussion				158
	6.4.1	Spill 1					158
	6.4.2	Spill 2					160
	6.4.3	Spill 3					163
6.	5 Concl	usion					167
7 G	ENERAL	CONC	LUSION	AND RECOM	IMEND	ATIONS	169
F	OR FUTU	RE RESI	EARCH				
7.	1 Gener	al Conclu	ision				169
7.	2 Recor	nmendati	ons for Futu	re Research			171
REFERE	NCES			\sim			174
APPEND	IXES						186
А	ppendix A						187
А	ppendix B						190
А	ppendix C						192
А	ppendix D						193
А	ppendix E						194
BIODAT	A OF STU	DENT					196
LIST OF	PUBLICA	TIONS					197

6