UNIVERSITI PUTRA MALAYSIA

CHARACTERISATION AND PATHOGENICITY OF MARASMIELLUS SPP. ISOLATED FROM OIL PALM AND COCONUT IN WEST MALAYSIA

BUSHRA SUBAIR ABDULSADA

FP 2012 58
CHARACTERISATION AND PATHOGENICITY OF MARASMIELLS SPP. ISOLATED FROM OIL PALM AND COCONUT IN WEST MALAYSIA

By

BUSHRA SUBAIR ABDULSADA

Thesis Submitted to the School Of Graduate Studies, University Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

September 2012
Special dedication

To my beloved parents and my family for their support and patience.

To my husband for his boundless love, understanding, encouragement and patience throughout my study.
Abstract of thesis presented to the Senate of University Putra Malaysia in fulfillment of the requirement of the degree of Doctor of Philosophy

CHARACTERISATION AND PATHOGENICITY OF MARASMIELLUS SPP. ISOLATED FROM OIL PALM AND COCONUT IN WEST MALAYSIA

By

BUSHRA SUBAIR ABDULSADA

September 2012

Chairman: Assoc Prof. Zainal Abidin Mior Ahmad, PhD

Faculty: Agriculture

Species of Marasmiellus are of widespread occurrence causing numerous diseases on a wide range of tropical crops. Although Marasmiellus palmivor us has been reported from only a few countries, its records of growth behaviour and habitat suggest the existence of this fungus in countries where oil palm and coconut are cultivated commercially. There is lack of information on the characterization and pathogenicity of species in Malaysia and globally. In addition, the pathogenicity of M. palmivor us has never been proven. The aim of this study was to isolate the fungus from diseased oil palm and coconut, identify and characterize the causal pathogen of bunch rot of oil palm and embryo and shoot rot of germinating coconuts in West Malaysia using morphological and molecular characteristics. The pathogenicity tests and cross inoculations of isolates on oil palm (fruits, seeds, and seedlings) and coconut seeds in the
glasshouse were also conducted. Pure cultures of *Marasmiellus* were isolated from samples of diseased oil palm fruits, coconut seeds, basidiocarps and rhizomorphs. Identification of fungus was done based on characteristics observed from cultural and molecular methods. Pathogenicity tests were conducted to confirm pathogenicity of oil palm and coconut isolates in the glasshouse. Samples were collected from six locations in two states in West Malaysia from which 25 isolates were obtained for study. Pure cultures of isolates produced colonies that were fast growing on Potato Dextrose Agar (PDA) and Malt Extract Agar (MEA) media, with dense white mycelia and lighter orange colour at the center, binucleate hyphae, were mostly not immersed in agar. Clamp connections were abundantly present in all isolates. The optimum temperature for all isolates growth was 30°C, and all were capable of growing on a wide range of pH. Morphology of basidiocarps and basidiospores was found to be similar with differences in the size and colour of basidiocarps and size of basidiospores. The fungus pileus colour was pale orange in the middle, with a depressed center, and measured 9-30mm in diameter. The stipe was white, pale orange, silky, base was initially filled with tissues then becoming hollow, bulbous and eccentric and measured 7-29mm in diameter. The basidiospores were hyaline, oblong to ellipsoid and smooth. Molecular characterization of isolates based on nLSU region and BLAST results indicated that all 25 isolates sequences were 99% identical to that of *Marasmiellus palmivorus* AY639434 from USA–Hawaii. Phylogenetic analysis of 25 isolates based on neighbor joining method on nLSU region grouped them in the same
cluster with *M. palmivorus* AY639434 from USA–Hawaii and distinct from other genera in *Marasmiaceae* family. Phylogenetic analysis based on neighbor joining method on ITS regions similarly grouped them in the same cluster. There was no previous sequence deposited in GeneBank for *M. palmivorus* and this is the first sequence for this region. Ten different isolates of *Marasmiellus palmivorus* successfully produced high numbers of basidiocarps in the glasshouse when cultured using two artificial methods: whole wheat grain and rubber wood block. Pathogenicity tests on oil palm fruits showed the highest disease severity caused by isolates C3, C4, and C5 with no significant difference between wounded and unwounded fruits. All isolates tested infected shoots and radicles emerging from seed recognizable as two types of damping-off: pre-emergence and post-emergence, decay of hypocotyl near the soil lines and root tissues. The pre and post-emergence damping off ranged from 37.5 to 100 %. Pathogenicity tests on oil palm seedlings showed significant differences in disease incidence between isolates. Five isolates (C3, C4, C5, Bangi1, and MPOB1) were pathogenic to coconut seeds. Isolates C3, C4 and C5 caused highest percentage disease incidence on coconut seeds. Post-emergence disease of roots of coconut seedlings was considered a new finding. Histopathological examinations of the root tissues of oil palm and coconut showed the presence of fungal hyphae within pith, xylem, cortex and epidermis cells with brownish inclusions found in the phloem and pith. The results obtained from pathogenicity tests confirmed *M. palmivorus* to be potentially pathogenic to oil palm and coconut and causing various disorders.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

PENCIRIAN DAN PATOGENISITI PENCILAN MARASMIELLUS SPP. DARI KELAPA SAWIT DAN KELAPA DI MALAYSIA BARAT

Oleh

BUSHRA SUBAIR ABDULSADA

September 2012

Pengerusi: Assoc Prof. Zainal Abidin Mior Ahmad, PhD
Fakulti: Pertanian

Spesies Marasmiellus terdapat dengan melnas dan menyebabkan pelbagai penyakit pada tanaman tropika. Walau pun Marasmiellus palmivorus telah dilapor dari hanya beberapa negara, catatan perlakuan pertumbuhan dan kehidupan menunjukkan kehadiran kulat ini dalam semua negara di mana kelapa sawit dan kelapa ditanam secara komersial. Terdapat maklumat yang kurang mengenai pencirian dan patogenisiti spesies di Malaysia dan global. Tambahan pula, patogenisiti M. palmivorus belum pernah terbukti. Tujuan kajian ini adalah untuk memencil kulat dari kelapa sawit dan kelapa yang berpenyakit, mengenal pasti dan mencirikan patogen penyebab reput tandan kelapa sawit dan reput embrio dan pucuk kelapa bercambah di Malaysia Barat menggunakan ciri morfologi dan molikul. Ia juga menjalankan ujian patogenisiti dan inokulasi silang pencilan dari kelapa sawit (buah,biji dan anak benih) dan benih kelapa di rumah kaca. Kultur tulen Marasmiellus dipencilkan dari sampel
untuk *M. palmivorus* dan ini merupakan aturan yang pertama bagi kawasan ini. Ujian patologenisiti ke atas buah kelapa sawit menunjukkan keterukan penyakit yang disebabkan oleh pencilan C3, C4 and C5 dengan perbezaan yang signifikan antara biji diluka dan yang tanpa luka. Kesemua pencilan yang diuji menjangkkiti pucuk dan akar yang keluar dari biji dicam sebagai dua jenis lecuh: pra cambah dan pos cambah, reput di bahagian hipokotil berhampiran paras tanah dan tisu akar. Lecuh pra dan pos cambah berjulat antara 37.5 ke 100%. Ujian patogenisiti ke atas benih kelapa sawit menunjukkan perbezaan yang signifikan dalam kejadlian penyakit antara pencilan C3, C4 dan C5; MPOB1, Bangi1, dan C2; C6,OP4,UPM4. Lima pencilan (C3, C4, C5, Bangi1 dan MPOB1) adalah patogenik kapada biji kelapa. Pencilan C3, C4 dan C5 menyebobkan peratus kejadian penyakit paling tinggi pada biji kelapa. Penyakit pos - cambah pada akar benih kelapa merupakan satu penemuan baru. Pemerhatian histopatologi tisu akar kelapa sawit dan kelapa menury ukkan kehadiran hifa kulat dalam pith, xylem, korteks dan sel epidermis dengan pengisian perang dijumpai dalam floem dan pith. Keputusan dari ujian patogenisiti mengesahkan spesies *Marasmiellus palmivorus* berpotensi patogenik kepada kelapa sawit dan kelapa dan mengyebabkan pelbagai kerosakan.
ACKNOWLEDGEMENTS

First and foremost all praises and my endless thanks to Allah, the Most Beneficent, Most Gracious, Most Merciful for his heavenly, luxuriates and blessings over me throughout my life and the period of this study.

I would like to express my deepest thanks to my supervisor, Assoc. Prof. Dr. Zainal Abidin Mior Ahmad for his suggestions for improvement, guidance, invaluable comments, constructive criticisms and full encouragement throughout this study that supported the completion of this thesis. I would also like to extend my thanks and gratitude to my co-supervisors Assoc. Prof. Dr. Jugah Kadir and Dr. Wong Mui Yun for their advice and suggestions. The offer of graduate research fellowship from UPM is appreciated. I am very indebted to University of Baghdad, which provided the funding for my research during the period of study.

My deepest gratitude goes to my family, for their understanding and support throughout the period of study. I give appreciation to my beloved husband, Kamil Aboshkair, for his endless love, care, consistent support and assistance. Last but not least, I offer my regards and blessings to all of those who gave me support especially to my friends Roslina Sulaiman and Mansour Salati.
I certify that a Thesis Examination Committee has met on (insert the date of viva voce) to conduct the final examination of (Bushra Subair Abdulsada) on his thesis entitled “Characterisation and Pathogenicity of Marasmiellus spp. Isolated from Oil Palm and Coconuts in West Malaysia ” in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommended that the student be awarded the (interest the name of relevant degree).

Members of the Thesis Examination Committee were as follows:
Name of Chairperson, PhD
Title (e.g Professor/ Associate Professor/ Ir)
Name of Faculty
University Putra Malaysia
(Chairman)

Name of Examinar 1, PhD
Title (e.g Professor/ Associate Professor/ Ir)
Name of Faculty
University Putra Malaysia
(Internal Examiner)

Name of Examinar 2, PhD
Title (e.g Professor/ Associate Professor/ Ir)
Name of Faculty
University Putra Malaysia
(Internal Examiner)

Name of External Examinar, PhD
Title (e.g Professor/ Associate Professor/ Ir)
Name of Department and / or Faculty
Name of Organisation (University / Institute)
country
(External Examiner)

BUJANG KIM HUAT, PhD
Professor and Deputy Dean
School of Graduate Studies
University Putra Malaysia

Date:
This thesis was submitted to the senate of University Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Zainal Abidin Mior Ahmad, PhD
Associate Professor
Faculty of Agriculture
University Putra Malaysia
(Chairman)

Jugah Kadir, PhD
Associate Professor
Faculty of Agriculture
University Putra Malaysia
(Member)

Wong Mui Yun, PhD
Associate Professor
Faculty of Agriculture
University Putra Malaysia
(Member)

BUJANG BIN KIMHUAT, PhD
Professor and Dean
School of Graduate Studies
University Putra Malaysia

Date:
DECLARATION

I declare that the thesis is my original work except for quotations and citation, which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at University Putra Malaysia or at any other institution.

BUSHRA SUBAIR ABDULSADA

Date:
PERAKUAN

Saya memperakui bahawa tesis ini adalah hasil kerja saya yang asli melainkan petikan dan sedutan yang tiap-tiap satunya telah dijelaskan sumbernya. Saya juga memperakui bahawa tesis ini tidak pernah dimajukan sebelum ini, dan tidak dimajukan serentak dengan ini, untuk ijazah lain sama ada di Universiti Putra Malaysia atau di institusi lain.

BUSHRA SUBAIR ABDULSADA

Tarikh:
TABLE OF CONTENT

ABSTRACT	i
ABSTRAk	iv
ACKNOWLEDGMENT	vii
APPROVAL	ix
DECLARATION	x
LIST OF TABLES	xvi
LIST OF FIGURES	xviii
LIST OF ABBREVIATIONS	xxi

CHAPTER

1 GENERAL INTRODUCTION

2 LITERATURE REVIEW

- 2.1 Oil Palm
 - 2.1.1 Oil palm Diseases
- 2.2 Coconut Palm
 - 2.2.1 Coconut Palm Diseases
 - 2.2.2 Diseases Caused by *Marasmiellus* spp. on Coconut
- 2.3 The Marasmioid Fungi
 - 2.3.1 Taxonomy and Nomenclature
 - 2.3.2 Morphology of *Marasmiellus* spp.
 - 2.3.3 Host range of *Marasmiellus* spp.
 - 2.3.4 Distribution of *Marasmiellus* spp.
 - 2.3.5 Biology and Ecology of *Marasmiellus* spp.
 - 2.3.6 Diseases caused by *Marasmius* spp. and *Marasmiellus* spp. on Miscellaneous Host Plants
 - 2.3.7 Molecular Studies on Marasmioid Fungi

3 ISOLATION AND MORPHOLOGICAL CHARACTERIZATION OF *MARASMIELLUS* SPP. FROM OIL PALM AND COCONUT

- 3.1 Introduction
- 3.2 Materials and Methods
 - 3.2.1 Collection of Samples
 - 3.2.2 Isolation of *Marasmiellus* spp. From Palms Diseased and Fungi Structures
 - 3.2.3 Morphology of Basidiocarps and Basidiospores
 - 3.2.3.1 Basidiospore Germination Tests
3.2.3.2 Chemical Reaction Tests 54
3.2.4 Morphological Characteristics of Colony Cultures 55
 3.2.4.1 Effect of Media on Colony Growth 55
 3.2.4.2 Effect of Temperature on Colony Growth 56
 3.2.4.3 Effect of PH on Colony Growth 56
3.2.5 Morphological Characteristic of Hyphae 56
3.2.6 Scanning Electron Microscopy (SEM) 58
3.2.7 Statistical Analysis 59

3.3 Results and Discussion
 3.3.1 Collection of Samples and Isolation of Marasmiellus spp. 60
 from diseased palms and fungi structures
 3.3.2 Morphology of Basidiocarps and Basidiospores 63
 3.3.2.1 Basidiospore Germination and Chemical Reaction Tests
 3.3.3 Morphological and Characteristics of Colony Cultures 72
 3.3.3.1 Effect of Media on Colony Growth 74
 3.3.3.2 Effect of Temperature on Colony Growth 77
 3.3.3.3 Effect of pH on Colony Growth 79
 3.3.4 Morphological and Characteristic of Hyphae 79

3.4 Conclusion 81

4 MOLECULAR CHARACTERIZATION AND PHYLOGENETIC ANALYSIS OF MARASMEILLUS PALMIVORUS USING NUCLEAR LARGE SUBUNIT nLSU AND INTERNAL TRANSCRIBED SPACERS ITS REGIONS 82
 4.1 Introduction 82
 4.2 Materials and Methods 85
 4.2.1 DNA Extraction 85
 4.2.2 Amplification of Target DNA 87
 4.2.2.1 PCR Amplification of Ribosomal DNA- nuclear Large Subunit (nLSU) (rDNA-nLSU) 87
 4.2.2.2 PCR Amplification of Ribosomal DNA - Internal Transcribed Spacers (rDNA - ITS) 88
 4.2.3 Agarose Gel Electrophoresis and Staining 89
 4.2.4 Purification and Sequence Analysis 89
 4.2.5 Phylogenetic Analysis 90
 4.3 Results and Discussion 92
 4.3.1 Amplification of Target DNA 92
 4.3.1.1 PCR Amplification of Ribosomal DNA- nuclear 92
large subunit (nLSU) (rDNA-nLSU)

4.3.1.2 PCR Amplification of Ribosomal DNA - Internal Transcribed Spacers (rDNA - ITS)

4.4 Conclusion

5 PATHOGENICITY OF MARASMIELLUS PALMIVORUS ON OIL PALM AND COCONUT

5.1 Introduction

5.2 Materials and Methods
 5.2.1 Fungus Isolates
 5.2.2 Pathogenicity Tests
 5.2.2.1 Pathogenicity Tests on Detached Oil Palm Fruits in the Laboratory
 5.2.2.2 Pathogenicity Tests on Germinated Oil Palm Seeds in the Glasshouse
 5.2.2.3 Pathogenicity Tests on Oil Palm Seedlings in the Glasshouse
 5.2.2.4 Pathogenicity Tests on Coconut Seeds in the Glasshouse
 5.2.3 Histopathology of Oil Palm and Coconut Root Tissues
 5.2.4 Statistical Analysis

5.3 Result and Discussion

5.3.1 Pathogenicity Tests
 5.3.1.1 Pathogenicity Tests on Detached Oil Palm Fruits in the Laboratory
 5.3.1.2 Pathogenicity Tests on Germinated Oil Palm Seeds in the Glasshouse
 5.3.1.3 Pathogenicity Tests on Oil Palm Seedlings in the Glasshouse
 5.3.1.4 Pathogenicity Tests on Coconut Seeds in the Glasshouse
 5.3.2 Histopathology of Oil Palm and Coconut Root Tissues

5.4 Conclusion

6 SUMMARY, GENERAL CONCLUSION AND RECOMMENDATIONS FOR FUTURE RESEARCH

6.1 Summary and Conclusions
6.2 Recommendations for Future Research
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>REFERENCES</td>
<td>151</td>
</tr>
<tr>
<td>APPENDICES</td>
<td>178</td>
</tr>
<tr>
<td>BIODATA OF STUDENT</td>
<td>246</td>
</tr>
<tr>
<td>LIST OF PUBLICATIONS</td>
<td>247</td>
</tr>
</tbody>
</table>