UNIVERSITI PUTRA MALAYSIA

PREPARATION, AND ELECTRICAL, MAGNETIC AND THERMAL INVESTIGATION OF POLYPYRROLE-CHITOSAN COMPOSITE AND POLYPYRROLE-CHITOSAN-IRON OXIDE POLYMER NANOCOMPOSITE

JAMILEH AMIN

FS 2013 37
PREPARATION, AND ELECTRICAL, MAGNETIC AND THERMAL INVESTIGATION OF POLYPYRROLE-CHITOSAN COMPOSITE AND POLYPYRROLE-CHITOSAN-IRON OXIDE POLYMER NANOCOMPOSITE

By

JAMILEH AMIN

Thesis submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Doctor of Philosophy

June 2013
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any materials contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of materials may only be made with the express, prior, written permission of University Putra Malaysia.

Copyright © Universiti Putra Malaysia
Dedicated to my beloved mother, father, my sister Jelveh and her family

Without their understanding and support, I would never have completed this project.
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

PREPARATION, AND ELECTRICAL, MAGNETIC AND THERMAL INVESTIGATION OF POLYPYRROLE- CHITOSAN COMPOSITE AND POLYPYRROLE-CHITOSAN-IRON OXIDE POLYMER NANOCOMPOSITE

By

JAMILEH AMIN

June 2012

Chairman: Professor Zainal Abidin Talib, PhD

Faculty: Science

Conducting polymer composite based on Polypyrrole-Chitosan (PPy-CHI) and Polypyrrole-Chitosan-Iron oxide nanoparticles (PPy–CHI–Fe₃O₄) nanocomposite were prepared by using in-situ chemical polymerization method. (PPy–CHI) composites and (PPy–CHI–Fe₃O₄) nanocomposite were prepared with various percentages of CHI and Fe₃O₄ ranging from 0.0% (w/v) to 0.9% (w/v) and 0 wt% to 15wt% respectively. Results from conductivity experiments revealed that the highest conductivity was obtained from PPy–CHI–Fe₃O₄ nanocomposite prepared from 0.1 % (w/v) CHI, 3 Molar PPy and 3wt% Fe₃O₄ in 30 minutes at room temperature.

The X-ray diffractogram of PPy and CHI illustrated a broad scattering peak for PPy and two scattering peaks of almost equal intensity for CHI which is due to
their highly amorphous and semi-crystalline structure respectively. The XRD spectra for PPy-CHI composite was almost similar to those of PPy with a broad scattering at around 25°-26° indicating an amorphous structure. The XRD spectrum of PPy–CHI–Fe₃O₄ nanocomposite demonstrated similar to those observed from PPy and PPy–CHI composite matrix especially in the lower weight percentage of Fe₃O₄. However, as the nanoparticle loading increased, the characteristic peaks of Fe₃O₄ begun to dominate the nanocomposite spectra indicating to some uncoated Iron oxide nanoparticle which was confirmed by Energy-Dispersive X-ray (EDX) and transmission electron microscopy (TEM). The Fourier transform infrared spectroscopy (FT-IR) spectra of PPy–CHI and PPy–CHI–Fe₃O₄ illustrated almost the same characteristic positions of IR absorption bands similar to those of PPy. The small shift of PPy in the PPy–CHI composites is due to the identical peaks of PPy and CHI while in the PPy–CHI–Fe₃O₄ nanocomposites, the matrix layer of polypyrrole which covered the surface of iron oxide has absorbed most of the IR radiation. The results of Scanning Electron microscopy (SEM) and transmission electron microscopy (TEM) confirmed that the Fe₃O₄ nanoparticles have been coated with the layers of polymeric matrix. A distribution of discrete globular nanoparticles with almost uniform size and dimensions was exhibited in all PPy–CHI–Fe₃O₄ nanocomposite samples. The reduced size of PPy–CHI and PPy–CHI–Fe₃O₄ particles was explained by the effect of Chitosan and iron oxide, the steric stabilization effect of CHI and a core-shell structure for PPy–CHI–Fe₃O₄ nanocomposite which was confirmed by SEM and TEM.

The results of Vibrating Sample Magnetometer (VSM) revealed the magnetic properties for various PPy–CHI–Fe₃O₄ nanocomposites strongly depended on the
concentration loading of Fe$_3$O$_4$. The hysteresis loops of VSM illustrated superparamagnetic behavior for all the nanocomposite of PPy−CHI−Fe$_3$O$_4$ with different loading Fe$_3$O$_4$ percentage. The M$_s$ (saturation magnetization) and H$_c$ (coercivity) were monitored for samples with percentage loaded of Fe$_3$O$_4$ from 0.1 wt% to 15 wt%. M$_s$ increased from 0.874 emu/g to 5.97 emu/g while Hc decreased from 241.4 Oe to 194.48 Oe.

The results of electron spin resonance (ESR) spectroscopy revealed a reduction in the Peak-to-peak line-width (ΔH$_{pp}$) value between PPy and PPy−CHI. The adding of Fe$_3$O$_4$ have resulted in (ΔH$_{pp}$) values increased in the order PPy−CHI <PPy−CHI−Fe$_3$O$_4$ (1wt%) < PPy−CHI−Fe$_3$O$_4$ (3wt%) > PPy−CHI−Fe$_3$O$_4$ (5wt%) < PPy−CHI−Fe$_3$O$_4$ (7wt %) < PPy−CHI−Fe$_3$O$_4$ (10wt %) < PPy−CHI−Fe$_3$O$_4$ (15wt %) at room temperature. The spin concentration (N$_s$) measurement of PPy−CHI−Fe$_3$O$_4$ with the various Fe$_3$O$_4$ content revealed to be larger than PPy−CHI (8×106, 1.59×107, 3×107, 2.29 ×107, 2.43×107 and 2.49×107 spin g$^{-1}$ for PPy-CHI and 1wt%, 3wt%, 5wt%, 7wt% and 10wt%, of Fe$_3$O$_4$ respectively). The increase in percentage loading of iron oxide also resulted in better thermal stability of the nanocomposites.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk Ijazah Doktor Falsafah

Penyiasatan dan penyediaan, elektrikal, magnetik dan termal bagi Polipyrrole-Kitosan komposit
Polipyrrole-Kitosan oksida polimer komposit nano

Oleh

JAMILEH AMIN

Jun 2012

Pengerusi: Profesor Zainal Abidin Talib, PhD

Fakulti: Sains

Penyediaan komposit polimer berasaskan ke atas Polipyrrole-Kitosan (PPy-CHI) dan partikel nano Polipyrrole-Kitosan-Besi oksida (PPy−CHI−Fe₃O₄) komposit nano telah disediakan menggunakan kaedah pempolimeran kimia setempat. Komposit (PPy−CHI) dan komposit nano (PPy−CHI−Fe₃O₄) telah disediakan menggunakan pelbagai peratusan CHI dan Fe₃O₄ masing-masing dari 0.0% (w/v) sehingga 0.9% (w/v) dan 0 wt% kepada 15wt%. Dapatan daripada eksperimen kekonduksian mendapati bahawa konduksi tertinggi diperolehi daripada komposit nano PPy−CHI−Fe₃O₄ disediakan daripada 0.1 % (w/v) CHI, 3 Molar PPy dan 3wt% Fe₃O₄ dalam 30 minit pada suhu bilik.

X-ray difraktogram bagi PPy dan CHI ditunjukkan pada puncak tertinggi serakan terluar bagi PPy dan dua puncak serakan bagi hampir sama keamatannya bagi
CHI yang mana disebabkan masing-masing oleh struktur amorphous yang tinggi dan semi-hablar mereka yang tinggi masing-masing. Spektra XRD bagi komposit PPy-CHI adalah hampir sama dengan PPy yang serakan luasnya adalah pada 25°-26° menunjukkan struktur amorfus. Spektrum XRD spectrum bagi komposit nano PPy–CHI–Fe₃O₄ menunjukkan hasil sama dengan yang telah diperhatikan daripada matrik komposit PPy dan PPy–CHI khasnya dalam peratusan berat yang lebih rendah bagi Fe₃O₄. Walaubagaimanapun, semakin bebanan partikel nano bertambah, karekter puncak bagi Fe₃O₄ mula mendominasi spektrum komposit nano menunjukkan yang beberapa partikel nano Besi oksida tidak diselaputi yang telah disahkan oleh Energy-Dispersive X-ray (EDX) dan transmisi mikroskopi elektron (TEM). Fourier merubah spektrum infra merah spektroskopi (FTIR) bagi PPy–CHI dan PPy–CHI–Fe₃O₄ menunjukkan hampir sama karekter kedudukannya bagi penyerapan jalur IR adalah sama dengan PPy. Perubahan kecil PPy dalam komposit PPy–CHI adalah disebabkan kepada puncak yang sama bagi PPy dan CHI sementara dalam komposit nano PPy–CHI–Fe₃O₄, lapisan matrik bagi polipyrrole yang telah diselaputi dengan permukaan besi oksida telah menyerap kebanyakan radiasi IR. Hasil daripada mikroskopi Scanning Electron (SEM) dan transmisi mikroskopi elektron (TEM) mengesahkan yang partikel nano Fe₃O₄ telah dilaputi dengan lapisan matrik polimerik. Taburan bagi partikel nano diskret globular dengan hampir saiz uniform dan dimensi yang sama telah ditunjukkan dalam semua sampel komposit nano PPy–CHI–Fe₃O₄. Pengurangan saiz bagi PPy–CHI dan partikel PPy–CHI–Fe₃O₄ telah diterangkan dengan kesan oksida Kitosan dan besi , kesan penstabilan sterik bagiCHI dan struktur teras-luaran bagi komposit nano PPy–CHI–Fe₃O₄ telah disahkan dengan SEM dan TEM.
Dapatan bagi Vibrating Sample Magnetometer (VSM) menunjukkan yang sifat magnetik bagi pelbagai komposit nano PPy−CHI−Fe₃O₄ secara kuatnya bergantung kepada bebanan tumpuan bagi Fe₃O₄. Histeresis lilitan bagi VSM berasaskan tingkah laku superparamagnetik bagi kesemua komposit nano PPy−CHI−Fe₃O₄ dengan peratusan berbeza bebanan Fe₃O₄. Mₛ (penepuan pemagnetan) dan Hₘ (koektiviti) telah diperhatikan kepada sampel dengan peratusan yang mengandungi Fe₃O₄ daripada 0.1 wt% kepada15 wt%. Mₛ meningkat daripada 0.874 emu/g kepada 5.97 emu/g sementara Hₘ berkurangan daripada 241.4 Oe kepada 194.48 Oe.

Dapatan dari putaran resonan elektron (ESR) spektroskopi menunjukkan pengurangan dalam nilai Peak-to-peak line-width (ΔHₚₚ) antara PPy dan PPy−CHI. Penambahan Fe₃O₄ telah menyebabkan dalam nilai (ΔHₚₚ) meningkat dalam turutan PPy−CHI <PPy−CHI−Fe₃O₄ (1wt%) < PPy−CHI−Fe₃O₄ (3wt%) > PPy−CHI−Fe₃O₄ (5wt%) < PPy−CHI−Fe₃O₄ (7wt%) < PPy−CHI−Fe₃O₄ (10wt%) < PPy−CHI−Fe₃O₄ (15wt%) pada suhu bilik. Pengukuran putaran tumpuan (Nₛ) bagi PPy−CHI−Fe₃O₄ dengan pelbagai kandungan Fe₃O₄ menunjukkan ianya lebih besar daripada PPy−CHI (8×10⁶, 1.59×10⁷, 3×10⁷, 2.29×10⁷, 2.43×10⁷ dan 2.49×10⁷ spin g⁻¹ kepada PPy−CHI dan1wt%, 3wt%, 5wt%, 7wt% dan10wt%, of Fe₃O₄ masing-masing). Peningkatan dalam peratusan bebanan oksida besi turut menyebabkan kestabilan terma bagi komposit nano yang lebih baik .
ACKNOWLEDGMENTS

Pursuing a Ph.D. project like climbing a mountain is painful and enjoyable, step by step, accompanied with bitterness, hardships, frustration, experience, encouragement and trust also with help of many people. I realized that it was teamwork that it would not have been possible to write a doctoral thesis without the help and support of the kind people around. Though it will be very hard to express my gratitude to all those people in words, I would like to appreciate of all their helps.

First of all, I am grateful to the Almighty Allah for all happiness, strength and patience offered me during the undertaking of this project. This thesis would not have been possible without the help, support and patience of my honorific supervisor, Professor Zainal Abidin Talib, PhD. I’d like to give him my sincere thanks for giving me the opportunity to be his student and for his kind advice and encouragement throughout this entire project. I would like to express my deepest appreciation and special to Professor Anuar Kassim PhD, and my committee members, Professor Mohammad Zaki AB. Rahman and Doctor H.N.M. Ekramul Mahmud for their good advice, suggestions, support and friendship.

I am very grateful for my very supportive parents who always were beside me to give me love. Their understanding and love encourage me to continue and pursuing a Ph.D project abroad. I would like to give my sincere thanks to my
parents, my sister and her family for giving me their unequivocal support throughout, as always, for which my mere expression of thanks likewise does not suffice.

I am grateful to all the staff of the Faculty of Science for helping me feel home here at UPM. Special thanks go to the XRD, Mrs Rusnani Amirudin, Mr Mohd Zain Mohd Yusof, Mrs Zaidina and other science officers whose names are not mentioned in this section for their assistance in analyzing the samples and their valuable effort and time.

It is a pleasure to acknowledge my colleagues Dr. Mahnaz, Dr. Kamyar, Majid Afain, Kasra, Masoud, Mohammad Reza, Rahima, Sabri, who have been helpful and willing to share their knowledge, skills and experience.

Last but not least, without the love, support, guidance, and encouragement of my family, this moment would never have been realized. I would like to express my deepest gratitude to all my family members. I love you and thank you so much.
I certify that an Examination Committee has met on 4 June 2013 to conduct the final examination of Jamileh Amin on her Doctor of Philosophy thesis entitled “Preparation, and Electrical, Magnetic and Thermal Investigation of Polypyrrole–Chitosan Composite and Polypyrrole–Chitosan–Iron Oxide Polymer Nanocomposite” in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Abdul Halim Abdullah
Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Chairman)

Abdul Halim Shaari
Professor
Faculty of Science
Universiti Putra Malaysia
(Internal Examiner)

Mansor Hj Ahmad
Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Internal Examiner)

Hikmat S.Hilal
Professor
Department of Chemistry
An-Najah N.University
(External Examiner)

NORITAH OMAR, PhD
Assoc. Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 16 August 2013

xii
This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Zainal Abidin Talib, PhD
Professor
Faculty of Science
University Putra Malaysia
(Chairman)

Anuar Kassim, PhD
Professor
Faculty of Sciences
Universiti Putra Malaysia
(Member)

Mohammad Zaki AB. Rahman
Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Member)

H.N.M. Ekramul Mahmud
Senior lecturer
Department of Chemistry
Universiti of Malaya
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at University Putra Malaysia or other institutions.

2013/8/14

JAMILEH AMIN

Date: 4 June 2013
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>SECTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vii</td>
</tr>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>x</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xv</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xx</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xxi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxviii</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION 1
 1.1 Overview 1
 1.2 Polymers 1
 1.3 Introduction on Conducting Polymers 2
 1.4 Intrinsically Conducting Polymer (ICP) 3
 1.5 Nanocomposite Materials 5
 1.6 Multifunctional Nanomaterials 7
 1.7 Background of this research 10
 1.8 Research Problem 11
 1.9 Research Objectives 11

2 LITERATURE REVIEW 13
 2.1 Conducting Polymer 13
 2.2 History of Conducting Polymers 14
 2.3 Polypyrrole as Conducting Polymer 16
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4</td>
<td>Conduction Mechanism</td>
<td>18</td>
</tr>
<tr>
<td>2.5</td>
<td>Polymerization of Pyrrole</td>
<td>21</td>
</tr>
<tr>
<td>2.5.1</td>
<td>Mechanism of Polymerization</td>
<td>23</td>
</tr>
<tr>
<td>2.6</td>
<td>Chitosan: Source, Structure and Manufacturing</td>
<td>29</td>
</tr>
<tr>
<td>2.7</td>
<td>Background on Magnetism</td>
<td>33</td>
</tr>
<tr>
<td>2.7.1</td>
<td>Diamagnetism</td>
<td>34</td>
</tr>
<tr>
<td>2.7.2</td>
<td>Paramagnetism</td>
<td>34</td>
</tr>
<tr>
<td>2.7.3</td>
<td>Ferromagnetism</td>
<td>35</td>
</tr>
<tr>
<td>2.7.4</td>
<td>Antiferromagnetism</td>
<td>36</td>
</tr>
<tr>
<td>2.7.5</td>
<td>Ferrimagnetism</td>
<td>36</td>
</tr>
<tr>
<td>2.7.6</td>
<td>Magnetite (Fe_3O_4)</td>
<td>38</td>
</tr>
<tr>
<td>2.7.7</td>
<td>Magnetism in Nanoparticles</td>
<td>41</td>
</tr>
<tr>
<td>2.8</td>
<td>Composites and Nanocomposites</td>
<td>43</td>
</tr>
<tr>
<td>2.9</td>
<td>Electron Transport in Conductive-Polymer Nanocomposites</td>
<td>43</td>
</tr>
<tr>
<td>2.10</td>
<td>Magnetic Conducting Polymer Nanocomposites</td>
<td>46</td>
</tr>
<tr>
<td>2.10.1</td>
<td>Solution-Based Oxidation Method</td>
<td>48</td>
</tr>
<tr>
<td>2.10.2</td>
<td>Physicochemical Property Characterization</td>
<td>49</td>
</tr>
<tr>
<td>2.10.3</td>
<td>Microstructure of the Conductive Polymer Nanocomposites</td>
<td>49</td>
</tr>
<tr>
<td>2.10.4</td>
<td>Interaction between the Nanoparticles and the Conductive-Polymer Matrix</td>
<td>51</td>
</tr>
<tr>
<td>2.10.5</td>
<td>Magnetic Properties of Conductive-Polymer Nanocomposites</td>
<td>52</td>
</tr>
</tbody>
</table>

3 METHODOLOGY

3.1 Introduction | 57 |
3.2 Chemicals | 57 |
3.3 Methods | 58 |
3.3.1 Electrical Conductivity Measurements	62
3.3.2 Standard Four-Probe Technique	62
3.3.3 Fourier Transform Infrared Spectrometry (FT-IR)	66
3.3.4 X-ray Diffraction (XRD)	67
3.3.5 UV-Visible	68
3.3.6 Scanning Electron Microscopy (SEM)	71
3.3.7 Transmission Electron Microscopy (TEM)	72
3.3.8 Electron Spin Resonance (ESR)	73
4 RESULTS AND DISCUSSION 80

4.1 Introduction 80
4.2 Electrical Conductivity of PPy-CHI-Fe$_3$O$_4$ Conducting Polymer Nanocomposite 81
 4.2.1 Effect of Preparation Time 82
 4.2.2 The Effect of Chitosan Concentration as Insulating Polymer on the Conductivity of PPy—CHI—Fe$_3$O$_4$ (NP) Polymer Composite 85
 4.2.3 Effect of Monomer Concentration on the Conductivity of PPy—CHI—Fe$_3$O$_4$ (NP) Polymer Composite 89
 4.2.4 Effect of Iron Oxide Nanoparticle Fe$_3$O$_4$ (NP) Concentration on the Conductivity of Synthesized Nanocomposite 92
4.3 Fourier Transform Infrared Spectrometry (FT-IR) of PPy—CHI—Fe$_3$O$_4$ (Molecular Structure) 98
4.4 UV-Vis-NIR Spectroscopy of PPy, PPy—CHI and PPy—CHI—Fe$_3$O$_4$ Composites 110
4.5 Using UV-Vis-NIR Spectra for Calculation of the Optical Band Gap of PPy and PPy-CHI-Fe$_3$O$_4$ Composite 113
4.6 XRD Analysis 120
 4.6.1 Molecular Order of PPy—CHI Composite Powders 120
 4.6.2 The XRD Analysis of Iron Oxide Nanoparticle 121
 4.6.3 Molecular Order of PPy—CHI—Fe$_3$O$_4$ Polymer nanocomposites 123
4.7 Magnetic Properties 125
4.8 Electron Spin Resonance (ESR) 130
 4.8.1 Peak-to-Peak Linewidth (ΔH_{pp}) 132
 4.8.2 Spin Concentration (N_s) 134
 4.8.3 Dysonian EPR lineshape and its relation to conductivity 136
 4.8.4 g-factor 137
4.9 Morphological study of PPy, PPy—CHI Composite and PPy—CHI—Fe$_3$O$_4$ Nanocomposites 138
4.9.1 Scanning Electron Microscopy (SEM) 138
4.9.2 Energy-Dispersive X-ray (EDX) 144
4.9.3 Transmission Electron Microscopy (TEM) 147

4.10 Thermal Stability 153
 4.10.1 Differential Scanning Calorimetry (DSC) Analysis 153
 4.10.2 Thermogravimetric Analysis (TGA) 153

5 CONCLUSION AND FUTURE STUDIES 157
 5.1 Conclusion 157
 5.2 Future Studies 160

REFERENCES 161