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ABSTRACT 

In this paper, 3-point Block Backward Differentiation Formulas (3BBDF) is used for 

the numerical solution of Fuzzy Differential Equations (FDEs). Implementation of 

3BBDF using Newton iteration is discussed. Numerical results obtained by the 3BBDF 

are presented and compared with the Modified Simpson method to illustrate the ability 

of the 3BBDF method for solving FDEs. 
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1. INTRODUCTION 

The idea of fuzzy sets was first introduced by Zadeh (1965) where 

membership function was initiated and was known as the degree of an 

element in a particular set. Chang and Zadeh then introduced fuzzy mapping 

in Chang and Zadeh (1972) where it is being used as one of the most 

important conditions in control problems in order to achieve a control goal. 

Dubois and Prade in Dubois and Prade (1982) used extension principle in 

their work on differentiation at a fuzzy point of an ordinary function as well 

as differentiation at a non-fuzzy point of a fuzzy function. Seikkala in 
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Seikkala (1987) generalized the concept of fuzzy initial value problems 

(FIVPs) and it has been used widely by many researchers nowadays. Ma et 

al. (1999) was the first who introduced a numerical solution of fuzzy 

differential equations (FDEs) by using classical Euler method while 

Duraisamy used a modified Euler method in Seikkala (1987). 

Homotopypertubation method was used by both Allahviranloo and Ghanbari 

in [5, 12] where linear FDEs and FIVP involving generalized differentiability 

were solved. In this paper, we modify fully implicit 3-point Block Backward 

Differentiation Formulas (3BBDF) proposed by Ibrahim et al.in [14] in order 

to find the solutions for FIVPs. In the next section, we give some basic 

properties of FDEs. 

 

2. PRELIMINARIES 

A fuzzy number 𝑚 can be written in parametric form as 𝑚 =

(𝑚(𝑟),𝑚(𝑟)), 𝑟 ∈ [0, 1] that satisfies the following conditions: 

 

(a) (𝑚(𝑟) is a bounded left continuous monotonic increasing 

function over [0, 1], 
(b) 𝑚(𝑟) is a bounded right continuous monotonic decreasing 

function over [0, 1], and 
(c) 𝑚(𝑟) ≤ 𝑚(𝑟), 0 ≤ 𝑟 ≤ 1. 

 

A triangular fuzzy number, 𝑛 is defined by three numbers 𝑘1,  𝑘2 and 

𝑘3 where 𝑘1 < 𝑘2 < 𝑘3. The membership function of 𝑛 is a triangle with 

base [𝑘1, 𝑘3] and vertex at 𝑘2. 

 

In this paper, we consider the following first-order fuzzy initial value 

differential equation given by 

 

{
𝑦′(𝑡) = 𝑓(𝑡, 𝑦(𝑡)),      𝑡 ∈ [ 𝑡0, 𝑇 ]

𝑦(𝑡0) = 𝑦0

     (1) 

 

where 𝑦 is a fuzzy function of 𝑡, 𝑓(𝑡, 𝑦(𝑡)) is a fuzzy function of the crisp 

variable 𝑡 and the fuzzy variable 𝑦, 𝑦’ is the fuzzy derivative of 𝑦 and 

𝑦(𝑡0) = 𝑦0 is a triangular or a triangular shaped fuzzy number. The fuzzy 

function 𝑦by 𝑦 = [ 𝑦, 𝑦 ]. This means that the 𝑟-level set of 𝑦(𝑡) for 

𝑡 𝜖 [ 𝑡0, 𝑇 ]is [ 𝑦(𝑡) ]𝑟  =  [ 𝑦(𝑡; 𝑟), 𝑦(𝑡; 𝑟) ].  
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Also 

[ 𝑦’(𝑡)]𝑟 = [𝑦’(𝑡; 𝑟), 𝑦’(𝑡; 𝑟)] 

[ 𝑓(𝑡, 𝑦(𝑡))]
𝑟

= [𝑓(𝑡, 𝑦(𝑡); 𝑟), 𝑓(𝑡, 𝑦(𝑡); 𝑟)]. 

 

Write 𝑓(𝑡, 𝑦)  =  [ 𝑓( 𝑡, 𝑦 ), 𝑓( 𝑡, 𝑦 ) ] and 𝑓(𝑡, 𝑦)  =  𝐹[ 𝑡,  𝑦,  𝑦 ], 𝑓(𝑡, 𝑦)  =

 𝐺[ 𝑡,  𝑦,  𝑦 ]. Since 𝑦’ =  𝑓(𝑡, 𝑦), then 

𝑦’(𝑡; 𝑟)  =  𝑓( 𝑡, 𝑦(𝑡); 𝑟 )  = 𝐹 [ 𝑡, 𝑦(𝑡; 𝑟), 𝑦(𝑡; 𝑟)] 

𝑦’(𝑡; 𝑟)  =  𝑓( 𝑡, 𝑦(𝑡); 𝑟 )  =  𝐺 [ 𝑡, 𝑦(𝑡; 𝑟), 𝑦(𝑡; 𝑟)]. 

 

Also, 

[ 𝑦(𝑡0)]𝑟  =  [𝑦(𝑡0; 𝑟), 𝑦(𝑡0; 𝑟)] 

[ 𝑦0]𝑟 = [ 𝑦0(𝑟), 𝑦0
(𝑟) ] 

𝑦(𝑡0; 𝑟)  =  𝑦0(𝑟),     𝑦( 𝑡0; 𝑟)  =  𝑦0(𝑟) 

 

By using the extension principle defined by Zadeh (1965), the membership 

function is 

 

𝑓(𝑡, 𝑦(𝑡))(𝑠)  =  𝑠𝑢𝑝{ 𝑦(𝑡)(𝜏)| 𝑠 = 𝑓(𝑡, 𝜏) }, 𝑠 𝜖 ℝ 

 

From this, it follows that 

 

[ 𝑓(𝑡, 𝑦(𝑡)) ]𝑟 = [𝑓(𝑡, 𝑦(𝑡); 𝑟), 𝑓(𝑡, 𝑦(𝑡); 𝑟)] , 𝑟 𝜖 [ 0, 1 ] 

 

where 
𝑓(𝑡, 𝑦(𝑡); 𝑟) =  𝑚𝑖𝑛{ 𝑓(𝑡, 𝑢)|𝑢 𝜖 [ 𝑦(𝑡)]𝑟 } 

𝑓(𝑡, 𝑦(𝑡); 𝑟) =  𝑚𝑎𝑥{ 𝑓(𝑡, 𝑢)|𝑢 𝜖 [ 𝑦(𝑡)]𝑟 }. 

 

3. REVIEW OF 3-POINT BBDF 

In this section, we review the derivation of implicit 3BBDF by 

Ibrahim et al. in [14]. Consider an initial value problem for the first order 

ODE of the form: 

 

𝑦′ = 𝑓(𝑥, 𝑦), 𝑦(𝑎) = 𝑦0, 𝑎 ≤ 𝑥 ≤ 𝑏    (2) 
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The method computes three approximation values, 𝑦𝑛+1, 𝑦𝑛+2 and 

𝑦𝑛+3 simultaneously using one earlier block as shown in Figure 1. 

 

 
 

Figure 1: 3-Point Block Method of Constant Step Size 

 

The coefficients of 3BBDF are generated by the backward difference 

representation of the interpolating polynomial 𝑃5,𝑛+3(𝑥) which interpolates 

𝑓(𝑥, 𝑦) at points 𝑦𝑛−2, 𝑦𝑛−1, 𝑦𝑛, 𝑦𝑛+1, 𝑦𝑛+2 and 𝑦𝑛+3 has the form, 

 

𝑃5,𝑛+3(𝑥) = ∑ (−1)𝑚 (
−𝑠
𝑚

)∇𝑚5
𝑚=0 𝑦𝑛+3    (3) 

 

where 

 

𝑠 =
𝑥 − 𝑥𝑛+3

ℎ
. 

 

The result of differentiating (3) once at the point 𝑥 = 𝑥𝑛+3 gives 

 

𝑃′5,𝑛+3(𝑥) =
1

ℎ
∑ 𝛿1,𝑚∇𝑚5

𝑚=0 𝑦𝑛+3     (4) 

 

Therefore, for the case 𝑗 = 1, it follows that 

 

𝐷1(𝑡) = ∑ 𝛿1,𝑚t𝑚∞
𝑚=0 = −log (1 − 𝑡)    (5) 

 

Equation (5) can be represented in the form of infinite series as follows 

 

− log(1 − 𝑡) = 𝑡 +
1

2
𝑡2 +

1

3
𝑡3 + ⋯ 

 

Then equating coefficients of 𝑡𝑚 in (5), results in the following relationship: 

 

∑ 𝛿1,𝑚t𝑚
5

𝑚=0

= 𝛿1,0t
0 + 𝛿1,1t

1 + 𝛿1,2t
2 + 𝛿1,3t

3 + 𝛿1,4t
4 + 𝛿1,5t

5 

  = 𝑡 +
1

2
𝑡2 +

1

3
𝑡3 +

1

4
𝑡4 +

1

5
𝑡5   (6)
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where 

𝛿1,0 = 0, 𝛿1,1 = 1, 𝛿1,2 =
1

2
, 𝛿1,3 =

1

3
, 𝛿1,4 =

1

4
, 𝛿1,5 =

1

5
 . 

 

Therefore, 

 

∑ 𝛿1,𝑚∇𝑚

5

𝑚=0

𝑦𝑛+3

= 𝛿1,0∇
0𝑦𝑛+3 + 𝛿1,1∇

1𝑦𝑛+3 + 𝛿1,2∇
2𝑦𝑛+3 + 𝛿1,3∇

3𝑦𝑛+3

+ 𝛿1,4∇
4𝑦𝑛+3 + 𝛿1,5∇

5𝑦𝑛+3

= 0 + ∇1𝑦𝑛+3 +
1

2
∇2𝑦𝑛+3 +

1

3
∇3𝑦𝑛+3 +

1

4
∇4𝑦𝑛+3

+
1

5
∇5𝑦𝑛+3

= 𝑦𝑛+3 − 𝑦𝑛+2 +
1

2
(𝑦𝑛+3 − 2𝑦𝑛+2 + 𝑦𝑛+1)

+
1

3
(𝑦𝑛+3 − 3𝑦𝑛+2 + 3𝑦𝑛+1 − 𝑦𝑛)

+
1

4
(𝑦𝑛+3 − 4𝑦𝑛+2 + 6𝑦𝑛+1 − 4𝑦𝑛 + 𝑦𝑛−1)

+
1

5
(𝑦𝑛+3 − 5𝑦𝑛+2 + 10𝑦𝑛+1 − 10𝑦𝑛 + 5𝑦𝑛−1 − 𝑦𝑛−2) 

 

It follows that 

 

∑ 𝛿1,𝑚∇𝑚

5

𝑚=0

𝑦𝑛+3 =
137

60
𝑦𝑛+3 − 5𝑦𝑛+2 + 5𝑦𝑛+1 

−
10

3
𝑦𝑛 +

5

4
𝑦𝑛−1 −

1

5
𝑦𝑛−2    (7) 

 

Equating (7) to 𝑓(𝑥𝑛+3, 𝑦𝑛+3), we obtain the discrete approximation to (2) 

 

ℎ𝑓𝑛+3 = ∑ 𝛿1,𝑚∇𝑚

5

𝑚=0

𝑦𝑛+3 =
137

60
𝑦𝑛+3 − 5𝑦𝑛+2 

+5𝑦𝑛+1 −
10

3
𝑦𝑛 +

5

4
𝑦𝑛−1 −

1

5
𝑦𝑛−2 

 

Solve for  𝑦𝑛+3, yields 
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𝑦𝑛+3 =
12

137
𝑦𝑛−2 −

75

137
𝑦𝑛−1 +

200

137
𝑦𝑛 −

300

137
𝑦𝑛+1 +

300

137
𝑦𝑛+2 +

60

137
ℎ𝑓𝑛+3   (8) 

 

The derivation of the first point 𝑦𝑛+1 and the second point 𝑦𝑛+2 are derived 

similarly by using the method previously described. The 3BBDF methods for 

finding the solution (2) at 𝑥𝑛+1, 𝑥𝑛+2 and 𝑥𝑛+3 simultaneously have the 

form, 

 

𝑦𝑛+1 =
1

10
𝑦𝑛−2 −

3

4
𝑦𝑛−1 + 3𝑦𝑛 −

3

2
𝑦𝑛+2 +

3

20
𝑦𝑛+3 + 3ℎ𝑓𝑛+1 

𝑦𝑛+2 = −
3

65
𝑦𝑛−2 +

4

13
𝑦𝑛−1 −

12

13
𝑦𝑛 +

24

13
𝑦𝑛+1 −

12

65
𝑦𝑛+3 +

12

13
ℎ𝑓𝑛+2 

𝑦𝑛+3 =
12

137
𝑦𝑛−2 −

75

137
𝑦𝑛−1 +

200

137
𝑦𝑛 −

300

137
𝑦𝑛+1 +

300

137
𝑦𝑛+2 +

60

137
ℎ𝑓𝑛+3 

 

 

4. MODIFIED 3-POINT BBDF FOR SOLVING FDEs 

DIRECTLY 

Let 𝑌 = [𝑌 , 𝑌] be the exact solution and 𝑦 = [𝑦, 𝑦] be the 

approximated solution of the FIVP given in equation (1). Let 

  

[𝑌(𝑡)]𝑟 = [𝑌(𝑡; 𝑟), 𝑌(𝑡; 𝑟)], 

[𝑦(𝑡)]𝑟 = [𝑦(𝑡; 𝑟), 𝑦(𝑡; 𝑟)]. 

 

Throughout this argument, the value of 𝑟 is fixed. Then the exact and 

approximated solution at 𝑡𝑛 are respectively denoted by  

 

[𝑌(𝑡𝑛)]𝑟 = [𝑌(𝑡𝑛; 𝑟), 𝑌(𝑡𝑛; 𝑟)] 

[𝑦(𝑡𝑛)]𝑟 = [𝑦(𝑡𝑛; 𝑟), 𝑦(𝑡𝑛; 𝑟)] 

 

for (0 ≤ 𝑛 ≤ 𝑁).Given the initial condition of the FIVP as in equation (1) 

 

[𝑦(𝑡0)]𝑟 = [𝑦(𝑡0; 𝑟), 𝑦(𝑡0; 𝑟)] 

 

It follows that 

 

𝐹(𝑡0; 𝑟) = 𝐹 [𝑡0, 𝑦(𝑡0; 𝑟), 𝑦(𝑡0; 𝑟)] 

𝐺(𝑡0; 𝑟) = 𝐺 [𝑡0, 𝑦(𝑡0; 𝑟), 𝑦(𝑡0; 𝑟)] 
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The initial values  [𝑦(𝑡1)]𝑟 , [𝑦(𝑡2)]𝑟 and [𝑦(𝑡3)]𝑟 are obtained by using Euler 

method, 

 
𝑦(𝑡𝑛+1; 𝑟) = 𝑦(𝑡𝑛; 𝑟) + ℎ𝐹(𝑡𝑛; 𝑟) 

𝐹(𝑡𝑛+1; 𝑟) = 𝐹 [𝑡𝑛+1, 𝑦(𝑡𝑛+1; 𝑟), 𝑦(𝑡𝑛+1; 𝑟)] 

𝑦(𝑡𝑛+1; 𝑟) = 𝑦(𝑡𝑛; 𝑟) + ℎ𝐺(𝑡𝑛; 𝑟) 

𝐺(𝑡𝑛+1; 𝑟) = 𝐺 [𝑡𝑛+1, 𝑦(𝑡𝑛+1; 𝑟), 𝑦(𝑡𝑛+1; 𝑟)] 

 

for  0 ≤ 𝑛 ≤ 2. The predictor formulas at  𝑡𝑛+1, 𝑡𝑛+2 and 𝑡𝑛+3 are 

 

[𝑦(𝑖)(𝑡𝑛+1)]𝑟 = [𝑦(𝑖)(𝑡𝑛+1; 𝑟), 𝑦
(𝑖)

(𝑡𝑛+1; 𝑟)], 

[𝑦(𝑖)(𝑡𝑛+2)]𝑟 = [𝑦(𝑖)(𝑡𝑛+2; 𝑟), 𝑦
(𝑖)

(𝑡𝑛+2; 𝑟)] 

 

and 

[𝑦(𝑖)(𝑡𝑛+3)]𝑟 = [𝑦(𝑖)(𝑡𝑛+3; 𝑟), 𝑦
(𝑖)

(𝑡𝑛+3; 𝑟)] 

 

respectively or can be written as 

 

 The lower and upper parts of [𝑦(𝑖)(𝑡𝑛+1)]𝑟 

= [𝑦(𝑖)(𝑡𝑛+1; 𝑟), 𝑦
(𝑖)

(𝑡𝑛+1; 𝑟)] 

 

𝑦(𝑖)(𝑡𝑛+1; 𝑟) = 𝑦(𝑡𝑛−2; 𝑟) − 3𝑦(𝑡𝑛−1; 𝑟) + 3𝑦(𝑡𝑛; 𝑟) 

𝐹(𝑖)(𝑡𝑛+1; 𝑟) = 𝐹 [𝑡𝑛+1, 𝑦
(𝑖)(𝑡𝑛+1; 𝑟), 𝑦

(𝑖)
(𝑡𝑛+1; 𝑟)] 

𝑦
(𝑖)

(𝑡𝑛+1; 𝑟) = 𝑦(𝑡𝑛−2; 𝑟) − 3𝑦(𝑡𝑛−1; 𝑟) + 3𝑦(𝑡𝑛; 𝑟) 

𝐺(𝑖)(𝑡𝑛+1; 𝑟) = 𝐺 [𝑡𝑛+1, 𝑦
(𝑖)(𝑡𝑛+1; 𝑟), 𝑦

(𝑖)
(𝑡𝑛+1; 𝑟)] 

 

 The lower and upper parts of [𝑦(𝑖)(𝑡𝑛+2)]𝑟 

= [𝑦(𝑖)(𝑡𝑛+2; 𝑟), 𝑦
(𝑖)

(𝑡𝑛+2; 𝑟)] 

 

𝑦(𝑖)(𝑡𝑛+2; 𝑟) = 3𝑦(𝑡𝑛−2; 𝑟) − 8𝑦(𝑡𝑛−1; 𝑟) + 6𝑦(𝑡𝑛; 𝑟) 

𝐹(𝑖)(𝑡𝑛+2; 𝑟) = 𝐹 [𝑡𝑛+2, 𝑦
(𝑖)(𝑡𝑛+2; 𝑟), 𝑦

(𝑖)
(𝑡𝑛+2; 𝑟)] 

𝑦
(𝑖)

(𝑡𝑛+2; 𝑟) = 3𝑦(𝑡𝑛−2; 𝑟) − 8𝑦(𝑡𝑛−1; 𝑟) + 6𝑦(𝑡𝑛; 𝑟) 

𝐺(𝑖)(𝑡𝑛+2; 𝑟) = 𝐺 [𝑡𝑛+2, 𝑦
(𝑖)(𝑡𝑛+2; 𝑟), 𝑦

(𝑖)
(𝑡𝑛+2; 𝑟)] 
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 The lower and upper parts of [𝑦(𝑖)(𝑡𝑛+3)]𝑟 

= [𝑦(𝑖)(𝑡𝑛+3; 𝑟), 𝑦
(𝑖)

(𝑡𝑛+3; 𝑟)] 

 

𝑦(𝑖)(𝑡𝑛+3; 𝑟) = 3𝑦(𝑡𝑛−2; 𝑟) − 8𝑦(𝑡𝑛−1; 𝑟) + 6𝑦(𝑡𝑛; 𝑟) 

𝐹(𝑖)(𝑡𝑛+3; 𝑟) = 𝐹 [𝑡𝑛+3, 𝑦
(𝑖)(𝑡𝑛+3; 𝑟), 𝑦

(𝑖)
(𝑡𝑛+3; 𝑟)] 

𝑦
(𝑖)

(𝑡𝑛+3; 𝑟) = 3𝑦(𝑡𝑛−2; 𝑟) − 8𝑦(𝑡𝑛−1; 𝑟) + 6𝑦(𝑡𝑛; 𝑟) 

𝐺(𝑖)(𝑡𝑛+3; 𝑟) = 𝐺 [𝑡𝑛+3, 𝑦
(𝑖)(𝑡𝑛+2; 𝑟), 𝑦

(𝑖)
(𝑡𝑛+3; 𝑟)] 

 

The matrix form of Newton iterations are as follows: 

 

[
 
 
 
 
 
 
 1 − 3ℎ

𝜕𝐹(𝑡𝑛+1; 𝑟)

𝜕𝑦(𝑡𝑛+1; 𝑟)

3

2
− 3ℎ

𝜕𝐹(𝑡𝑛+1; 𝑟)

𝜕𝑦(𝑡𝑛+2; 𝑟)
−

3

20
− 3ℎ

𝜕𝐹(𝑡𝑛+1; 𝑟)

𝜕𝑦(𝑡𝑛+3; 𝑟)

−
24

13
−

12

13
ℎ

𝜕𝐹(𝑡𝑛+2; 𝑟)

𝜕𝑦(𝑡𝑛+1; 𝑟)
1 −

12

13
ℎ

𝜕𝐹(𝑡𝑛+2; 𝑟)

𝜕𝑦(𝑡𝑛+2; 𝑟)

12

65
−

12

13
ℎ

𝜕𝐹(𝑡𝑛+2; 𝑟)

𝜕𝑦(𝑡𝑛+3; 𝑟)

300

137
−

60

137
ℎ

𝜕𝐹(𝑡𝑛+3; 𝑟)

𝜕𝑦(𝑡𝑛+1; 𝑟)
−

300

137
−

60

137
ℎ

𝜕𝐹(𝑡𝑛+3; 𝑟)

𝜕𝑦(𝑡𝑛+2; 𝑟)
1 −

60

137
ℎ

𝜕𝐹(𝑡𝑛+3; 𝑟)

𝜕𝑦(𝑡𝑛+3; 𝑟) ]
 
 
 
 
 
 
 

 

 

[

𝑒(𝑖+1)(𝑡𝑛+1; 𝑟)

𝑒(𝑖+1)(𝑡𝑛+2; 𝑟)

𝑒(𝑖+1)(𝑡𝑛+3; 𝑟)

] 

 

=

[
 
 
 
 
 −1 −

3

2

3

20
24

13
−1 −

12

65

−
300

137

300

137
−1 ]

 
 
 
 
 

[
 
 
 
𝑦(𝑖)(𝑡𝑛+1; 𝑟)

𝑦(𝑖)(𝑡𝑛+2; 𝑟)

𝑦(𝑖)(𝑡𝑛+3; 𝑟)]
 
 
 

+ ℎ

[
 
 
 
 
3 0 0

0
12

13
0

0 0
60

137]
 
 
 
 

[

𝐹(𝑖)(𝑡𝑛+1; 𝑟)

𝐹(𝑖)(𝑡𝑛+2; 𝑟)

𝐹(𝑖)(𝑡𝑛+3; 𝑟)

] 

 

+[

𝜔(𝑡𝑛+1; 𝑟)

𝜔(𝑡𝑛+2; 𝑟)

𝜔(𝑡𝑛+3; 𝑟)

] 

 

and 
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[
 
 
 
 
 
 1 − 3ℎ

𝜕𝐺(𝑡𝑛+1; 𝑟)

𝜕𝑦(𝑡𝑛+1; 𝑟)

3

2
− 3ℎ

𝜕𝐺(𝑡𝑛+1; 𝑟)

𝜕𝑦(𝑡𝑛+2; 𝑟)
−

3

20
− 3ℎ

𝜕𝐺(𝑡𝑛+1; 𝑟)

𝜕𝑦(𝑡𝑛+3; 𝑟)

−
24

13
−

12

13
ℎ

𝜕𝐺(𝑡𝑛+2; 𝑟)

𝜕𝑦(𝑡𝑛+1; 𝑟)
1 −

12

13
ℎ

𝜕𝐺(𝑡𝑛+2; 𝑟)

𝜕𝑦(𝑡𝑛+2; 𝑟)

12

65
−

12

13
ℎ

𝜕𝐺(𝑡𝑛+2; 𝑟)

𝜕𝑦(𝑡𝑛+3; 𝑟)

300

137
−

60

137
ℎ

𝜕𝐺(𝑡𝑛+3; 𝑟)

𝜕𝑦(𝑡𝑛+1; 𝑟)
−

300

137
−

60

137
ℎ

𝜕𝐺(𝑡𝑛+3; 𝑟)

𝜕𝑦(𝑡𝑛+2; 𝑟)
1 −

60

137
ℎ

𝜕𝐺(𝑡𝑛+3; 𝑟)

𝜕𝑦(𝑡𝑛+3; 𝑟) ]
 
 
 
 
 
 

 

[

𝑒
(𝑖+1)

(𝑡𝑛+1; 𝑟)

𝑒
(𝑖+1)

(𝑡𝑛+2; 𝑟)

𝑒
(𝑖+1)

(𝑡𝑛+3; 𝑟)

] 

 

=

[
 
 
 
 
 −1 −

3

2

3

20
24

13
−1 −

12

65

−
300

137

300

137
−1 ]

 
 
 
 
 

[

𝑦
(𝑖)

(𝑡𝑛+1; 𝑟)

𝑦
(𝑖)

(𝑡𝑛+2; 𝑟)

𝑦
(𝑖)

(𝑡𝑛+3; 𝑟)

] + ℎ

[
 
 
 
 
3 0 0

0
12

13
0

0 0
60

137]
 
 
 
 

[

𝐺(𝑖)(𝑡𝑛+1; 𝑟)

𝐺(𝑖)(𝑡𝑛+2; 𝑟)

𝐺(𝑖)(𝑡𝑛+3; 𝑟)

] 

 

+[

𝜔(𝑡𝑛+1; 𝑟)

𝜔(𝑡𝑛+2; 𝑟)

𝜔(𝑡𝑛+2; 𝑟)

] 

 

where 

 

 [ 𝑒(𝑖+1)(𝑡𝑛+1) ]𝑟, [ 𝑒(𝑖+1)(𝑡𝑛+2) ]𝑟and [ 𝑒(𝑖+1)(𝑡𝑛+3) ]𝑟 represent the 

increment of[ 𝑦(𝑡𝑛+1) ]𝑟,[ 𝑦(𝑡𝑛+2) ]𝑟and [ 𝑦(𝑡𝑛+3) ]𝑟respectively. 

 

 [𝜔(𝑡𝑛+1)]𝑟 = [𝜔(𝑡𝑛+1; 𝑟),𝜔(𝑡𝑛+1; 𝑟)], 

[𝜔(𝑡𝑛+2)]𝑟 = [𝜔(𝑡𝑛+2; 𝑟),𝜔(𝑡𝑛+2; 𝑟)] and [𝜔(𝑡𝑛+3)]𝑟 = [𝜔(𝑡𝑛+3; 𝑟), 

𝜔(𝑡𝑛+3; 𝑟)] represent the back values at 𝑡𝑛+1, 𝑡𝑛+2  and 

𝑡𝑛+3 respectively. 

 

The corrector formulae, [𝑦(𝑖+1)(𝑡𝑛+1)]𝑟,[𝑦(𝑖+1)(𝑡𝑛+2)]𝑟 and [𝑦(𝑖+1)(𝑡𝑛+3)]𝑟 

are written as follows 

 

 The lower and upper parts of  [𝑦(𝑖+1)(𝑡𝑛+1)]𝑟 are 

 

𝑦(𝑖+1)(𝑡𝑛+1; 𝑟) = 𝑦(𝑖)(𝑡𝑛+1; 𝑟) + 𝑒(𝑖+1)(𝑡𝑛+1; 𝑟) 
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𝐹(𝑖+1)(𝑡𝑛+1; 𝑟) = 𝐹 [𝑡𝑛+1, 𝑦
(𝑖+1)(𝑡𝑛+1; 𝑟), 𝑦

(𝑖+1)
(𝑡𝑛+1; 𝑟)] 

𝑦
(𝑖+1)

(𝑡𝑛+1; 𝑟) = 𝑦
(𝑖)

(𝑡𝑛+1; 𝑟) + 𝑒
(𝑖+1)

(𝑡𝑛+1; 𝑟) 

𝐺(𝑖+1)(𝑡𝑛+1; 𝑟) = 𝐺 [𝑡𝑛+1, 𝑦
(𝑖+1)(𝑡𝑛+1; 𝑟), 𝑦

(𝑖+1)
(𝑡𝑛+1; 𝑟)] 

 

 The lower and upper parts of  [𝑦(𝑖+1)(𝑡𝑛+2)]𝑟 are 

 

𝑦(𝑖+1)(𝑡𝑛+2; 𝑟) = 𝑦(𝑖)(𝑡𝑛+2; 𝑟) + 𝑒(𝑖+1)(𝑡𝑛+2; 𝑟) 

𝐹(𝑖+1)(𝑡𝑛+2; 𝑟) = 𝐹 [𝑡𝑛+2, 𝑦
(𝑖+1)(𝑡𝑛+2; 𝑟), 𝑦

(𝑖+1)
(𝑡𝑛+2; 𝑟)] 

𝑦
(𝑖+1)

(𝑡𝑛+2; 𝑟) = 𝑦
(𝑖)

(𝑡𝑛+2; 𝑟) + 𝑒
(𝑖+1)

(𝑡𝑛+2; 𝑟) 

𝐺(𝑖+1)(𝑡𝑛+2; 𝑟) = 𝐺 [𝑡𝑛+2, 𝑦
(𝑖+1)(𝑡𝑛+2; 𝑟), 𝑦

(𝑖+1)
(𝑡𝑛+2; 𝑟)] 

 

 

 The lower and upper parts of  [𝑦(𝑖+1)(𝑡𝑛+3)]𝑟 are 

 

𝑦(𝑖+1)(𝑡𝑛+3; 𝑟) = 𝑦(𝑖)(𝑡𝑛+3; 𝑟) + 𝑒(𝑖+1)(𝑡𝑛+3; 𝑟) 

𝐹(𝑖+1)(𝑡𝑛+3; 𝑟) = 𝐹 [𝑡𝑛+3, 𝑦
(𝑖+1)(𝑡𝑛+3; 𝑟), 𝑦

(𝑖+1)
(𝑡𝑛+3; 𝑟)] 

𝑦
(𝑖+1)

(𝑡𝑛+3; 𝑟) = 𝑦
(𝑖)

(𝑡𝑛+3; 𝑟) + 𝑒
(𝑖+1)

(𝑡𝑛+3; 𝑟) 

𝐺(𝑖+1)(𝑡𝑛+3; 𝑟) = 𝐺 [𝑡𝑛+3, 𝑦
(𝑖+1)(𝑡𝑛+3; 𝑟), 𝑦

(𝑖+1)
(𝑡𝑛+3; 𝑟)] 

 

 

5. NUMERICAL EXPERIMENT 

We consider the following FIVP 

 
𝑦′(𝑡) = 𝑦(𝑡)𝑡 ∈ [0,1] 

 

with initial condition 

 
𝑦(0) = (0.75 + 0.25𝑟, 1.125 − 0.125𝑟). 

 

The exact solution at  𝑡 = 1  is given by 

 
𝑌(1; 𝑟) = [(0.75 + 0.25𝑟)𝑒, (1.125 − 0.125𝑟)𝑒] 

 

Source: Ma et al. (1999). 
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In this example, our method 3BBDF is compared with the method 

used by Moghadam and Dahaghin (2004). The result is obtained as shown in 

Table 1. 

 

The following notations are used in the tables: 

𝒉 = Step size 

𝒓 = 𝑟 −level set of 𝑦(𝑡) for𝑡 ∈ [0,1] 
3BBDF = 3-point BBDF 

MS = Modified Simpson 

 

The errors in the computed values of  𝑦 and  𝑦 are calculated as follows: 

 

𝐸𝑟𝑟𝑜𝑟 = |𝑌(1; 𝑟) − 𝑦(1; 𝑟)| + |𝑌(1; 𝑟) − 𝑦(1; 𝑟)| 

 

 
TABLE 1.Error Comparison between 3BBDF and Modified Simpson 

 

h r 3BBDF MS 

10-1  

0 7.74E-02 4.46E-03 

0.2 7.84E-02 4.52E-03 

0.4 7.94E-02 4.58E-03 

0.6 8.05E-02 4.64E-03 

0.8 8.15E-02 4.70E-03 

1 8.25E-02 4.76E-03 

10-4  

0 8.41E-08 0.00E+00 

0.2 8.52E-08 1.00E-07 

0.4 8.63E-08 1.00E-07 

0.6 8.75E-08 0.00E+00 

0.8 8.86E-08 1.00E-07 

1 8.97E-08 1.00E-07 
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Figure 2: Comparison between Approximate Solutions and Exact Solutions at h=10-1. 

 

 

 
 

Figure 3: Comparison between Approximate Solutions and Exact Solutions at h=10-4. 

 

6. CONCLUSION 

In this work, we modified and implemented3BBDF from solving 

ODEs to FDEs. We have shown that for certain problems, 3BBDF 

outperform Modified Simpson in terms of accuracy. This indicates that 

further research on 3BBDF using variation in step size is valuable for FDEs. 
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