EXPERIMENTAL AND THEORETICAL EVALUATION OF THE TENSILE PROPERTIES OF CARBON NANOTUBE-COATED CARBON FIBRE HYBRID COMPOSITES

SHAZED MD. AZIZ

FK 2013 8
EXPERIMENTAL AND THEORETICAL EVALUATION OF THE TENSILE PROPERTIES OF CARBON NANOTUBE-COATED CARBON FIBRE HYBRID COMPOSITES

SHAZED MD. AZIZ

MASTER OF SCIENCE
UNIVERSITI PUTRA MALAYSIA

2013
DEDICATION

To my belated parents,
with memories...
Hierarchically structured hybrid composites are ideal engineered materials to carry loads and stresses due to their unconventional in-plane specific mechanical properties such as tensile modulus, strength, and stiffness. Growing carbon nanotubes (CNT) on the surface of high performance carbon fibres (CF) provides a means to tailor the mechanical properties of the fibre-matrix interface of a composite. The growth of CNT onto the surface of CF was conducted via floating catalyst chemical vapor deposition (CVD) technique. The mechanical properties of the resultant fibres, CNT density and alignment morphology were shown to depend on the CNT growth temperature, growth time, carrier gas flow rate, catalyst amount, and atmospheric conditions within the CVD chamber. The evidence of intensive CNT-coating on CF was shown at a CVD temperature of 700 °C and 30 minutes reaction time by using Scanning electron microscope (SEM). Single fibre/Epoxy composite coupons were fabricated by using both neat and CNT-coated CF to conduct single fibre fragmentation test (SFFT). For neat-CF/Epoxy composite coupons, IFSS was found to be 12.52 MPa. A CNT-coated CF demonstrated approximately 45% increase in calculated IFSS when treated at 700 °C and 30 minutes reaction
environment over that of the untreated fibre from which it was processed. Carbon nanotube coated short carbon fibre reinforced polypropylene (CNT-CF/PP) composites were fabricated. The resulting hybrid composite samples were characterized using the tensile testing method. For neat-CF/PP composite, Young’s modulus and tensile strength were found to be 1.72 GPa and 20.5 MPa respectively. In contrast with the neat CF/PP composite, CNT-CF/PP composite has shown enhanced Young’s modulus by approximately 104% and tensile strength increased to approximately 64%. The fibre-matrix adhesion was analyzed by using SEM on cryogenically fractured surface of both types of composites. The proper justification of fibre-matrix interfacial adhesion featuring the composite tensile properties was explained through interfacial shear strength (IFSS). Composites with high IFSS was found to show a high Young’s modulus and tensile strength. Theoretical prediction of hybrid CNT-CF/PP composite tensile properties was accomplished by using a hierarchical model which comprises Halpin–Tsai equations, Combined Voigt-Reuss model, simple rule-of-mixtures (RoM) and Krenchel approach. When the internal geometry of composite was a key factor RoM was utilized to study the fibre orientation distribution in the composite. A comprehensive fractographic investigation was carried out with scanning electron microscope (SEM) to analyze the fibre orientation distribution on the CNT-CF/PP composite fracture surfaces. Then, a thorough analysis was done on the SEM images using Bersoft and Geozebra image analyzing software packages to evaluate the fibre orientation distribution factor (ηv). In the context of this approach, when the fibre orientation effect is ignored a noteworthy deviation in tensile modulus with 51% was notified rather than experimental result of 1.72 GPa. When ηv is considered a more acceptable validation with the experimental results of tensile modulus was obtained which shows a
moderate deviation with 30% to the predicted value of 4.57 GPa. Finally, the discrepancies between the predicted and experimental values were explained in terms of stress-strain behavior.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk Ijazah Sarjana Sains

PENILAIAN UJIKAJI DAN TEORI MENGENAI SIFAT TEGANGAN KARBON NANOTUBE BERSALUT-GENTIAN KARBON HIBRID RENCAM

Oleh

SHAZED MD. AZIZ

Februari 2013

Pengerusi : Profesor Madya Suraya Binti Abdul Rashid, PhD
Fakulti : Kejuruteraan

dalam IFSS dikira apabila dirawat pada 700 °C dan 30 minit tindak balas persekitaran yang lebih serat yang tidak dirawat dari mana ia telah diproses. Karbon nanotube bersalut karbon pendek bertetulang gentian polipropilena (CNT-CF/PP) komposit telah direka. Yang terhasil sampel komposit hibrid telah dicirikan menggunakan kaedah ujian tegangan. Untuk neat-CF/PP komposit, Young’s modulus dan kekuatan tegangan telah didapati menjadi 1.72 GPa dan 20.5 MPa masing-masing. Berbeza dengan komposit neat-CF/PP, CNT-CF/PP komposit telah ditunjukkan meningkatkan modulus Young oleh kira-kira 104% dan kekuatan tegangan meningkat kepada kira-kira 64%. Rekatan gentian-matriks telah dianalisis dengan menggunakan SEM pada permukaan cryogenically patah kedua-dua jenis komposit. Justifikasi yang betul melekat gentian-matriks memaparkan sifat tegangan komposit telah dijelaskan melalui kekuatan ricih antara muka (IFSS). Composites with high IFSS was found to show a high Young’s modulus and tensile strength. Ramalan teori sifat tegangan CNT-CF/PP hibrid komposit telah dicapai dengan menggunakan model hierarki yang terdiri daripada persamaan Halpin-Tsai, Gabungan Voigt-Reuss model, mudah rule-of-mixture (RoM) dan pendekatan Krenchel. Apabila geometri dalaman komposit adalah RoM faktor utama telah digunakan untuk mengkaji pengagihan orientasi gentian dalam komposit. Satu siasatan fractographic yang komprehensif telah dijalankan dengan mikroskop imbasan elektron (SEM) untuk menganalisis taburan orientasi gentian patah CNT-CF/PP permukaan komposit. Kemudian, analisis yang teliti telah dilakukan ke atas imej SEM menggunakan Bersoft dan imej Geozebra menganalisis pakej perisian untuk menilai faktor pengagihan orientasi gentian (η_o). Dalam konteks pendekatan ini, apabila kesan orientasi gentian diabaikan sisihan yang patut diberi perhatian dalam modulus tegangan dengan 51% telah dimaklumkan bukan hanya hasil
eksperimen 1,72 GPa. Apabila dianggap pengesahan yang lebih diterima dengan keputusan ujikaji modulus tegangan diperolehi yang menunjukkan sisihan sederhana dengan 30% kepada nilai yang dimaksan 4,57 GPa. Akhirnya, perbezaan di antara nilai-nilai yang dimaksan dan eksperimen telah dijelaskan dalam segi kelakuan tegasan-terikan.
ACKNOWLEDGEMENTS

I am heartily grateful to Allah S.W.T for giving me the potency and patience that facilitates me to complete this thesis.

Here, I would like to convey my gratitude to my research advisor, Associate Professor Dr. Suraya Abdul Rashid, for giving me the opportunity to join her research group, and for her constant support, guidance, idea and encouragement throughout my research program. Her expertise and knowledge in nanomaterials and nanotechnology will prove to be priceless throughout the rest of my scientific career. I am also grateful to the other committee member, Dr. Mohamad Amran Mohd Salleh for his useful suggestions, criticisms and kind advices during my research period which helped me make this work success.

Secondly, I would like to acknowledge the support from Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia. I also deeply appreciate the help given by the staff members of Material Science Lab, Analytical Lab, and Strength of Materials Lab in Faculty of Engineering. I am glad to receive their kind trust in handling the analytical instruments during the experimental approaches.

Last but not least, I owe my sincere gratitude to my family, friends, and colleagues thus far and everything yet to come, especially my wife, Bidita Binte Salahuddin, and my sister, Khaleda Naznin for their priceless help, guidance, and endless encouragement and blessing.
I certify that a Thesis Examination Committee has met on 20 February 2013 to conduct the final examination of Shazed Md. Aziz on his thesis entitled "Experimental And Theoretical Evaluation of the Tensile Properties of Carbon Nanotube-Coated Carbon Fibre Hybrid Composites" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Zulkiflle bin Leman, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Thomas Choong Shean Yaw, PhD
Professor
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

Khamirul Amin b. Matori, PhD
Senior Lecturer
Faculty of Science
Universiti Putra Malaysia
(Internal Examiner)

Mohamad Rusop bin Haji Mahmood, PhD
Associate Professor
Faculty of Electrical Engineering
Universiti Teknologi Mara (UiTM)
Malaysia
(External Examiner)

SEOW HENG FONG, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Suraya Abdul Rashid, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Mohamad Amran Mohd Salleh, PhD
Senior Lecturer
Faculty of Engineering
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:

xi
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

SHAZED MD. AZIZ
Date: 20 February 2013
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>ix</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>x</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xix</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

1.1 Background Study 1
1.2 Problem Statement 4
1.3 Objectives of Study 6
1.4 Scope of Work 7
1.5 Thesis Outline 8

2 LITERATURE REVIEW

2.1 Carbon Fibre (CF) 10
2.2 Carbon Nanotubes (CNT) 12
2.3 CNT-coated CF 14
2.3.1 Chemical Vapor Deposition (CVD) 15
2.3.2 Floating Catalyst CVD Technique 16
2.3.3 Influence of Reaction Parameters 17
2.4 CF Reinforced Composite 19
2.4.1 Polymeric Matrix Resin 20
2.4.2 Randomly Oriented Short Fibre Reinforced Composites 22
2.4.3 Effect of CNT Coating on CF 23
2.5 Properties of Hybrid Composites 25
2.5.1 Interfacial Properties 26
2.5.2 Tensile Properties 29
2.5.3 Fractured Surface 31
2.6 Theoretical Prediction of Hybrid Composite 33
2.6.1 Numerical Approaches 34
2.6.2 Fibre Orientation in the Interior of Composite 37
2.7 Summary 39

3 METHODOLOGY

3.1 Introduction 41
3.2 Fabrication and Characterization of CNT-CF Hybrid Composites 42
3.2.1 Preparation of CNT-Coated CF 42
3.2.2 Preparation and Fragmentation Test of CNT-Single CF Hybrid Composite 45
3.2.3 Preparation and Tensile Test of CNT-CF Hybrid Composite 47
3.3 Application of Theoretical Model for Tensile Properties of CNT-CF Hybrid Composite 51
3.3.1 Modeling Young’s Modulus 51
3.3.2 Hierarchical Approach to Model Based Prediction of Hybrid Composite Tensile Properties 54

4 RESULTS AND DISCUSSION 57
4.1 Introduction 57
4.2 Experimental Evaluation on the Effect of CNT-Coating on the Tensile Properties of CNT-CF Hybrid Composite 58
4.2.1 Morphology of CNT-Coated CF 58
4.2.2 CNT-CF Interfacial Properties in Single Fibre Composite 64
4.2.3 Tensile Properties of CNT-CF Hybrid composite 70
4.3 Theoretical Evaluation of the Effect of CNT-Coating on the Tensile Properties of CNT-CF Hybrid Composite 73
4.3.1 Model Based Prediction of CNT-CF Hybrid Composite Tensile Properties 74
4.3.2 Validation of Theoretical Model 78

5 CONCLUSION AND FUTURE WORKS 82
5.1 Conclusions 82
5.2 Future Works 84

REFERENCES 86
APPENDIX 97
Properties of Commercial Carbon Fibre (CF) 98
Properties of Epoxy Matrix Resin 100
Properties of Polypropylene (PP) 102
Standard Test Method for Tensile Properties 103

BIODATA OF STUDENT 117
LIST OF PUBLICATION 118