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ABSTRACT 

This study attempts to model the volatility of palm oil price returns via a number of 

Generalized Autoregressive Conditional Heteroskedasticity class of models that capture 

the long-range memory, asymmetry, and heavy-tailedness phenomena. These models 

have been estimated in the presence of four alternative conditional distributions: 

Gaussian, Student t, generalized error distribution, and skewed Student t. The empirical 

results indicate that complex model specifications and distribution assumptions do not 

seem to outperform the simpler ones in terms of standard model selection criteria and 

numerical convergence. With regard to the conditional distributions, a symmetric fat-

tailed distribution has been found to be preferred to Gaussian and asymmetric distribution 

in many cases. 

 

Keywords: GARCH models, conditional probability distributions, long memory, 

asymmetry, heavy-tailedness, volatility, palm oil prices. 
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1. INTRODUCTION 

Although the commodity markets have been used for direct 

physical trading historically, however, over the last few years commodities 

have become an important part of many investment portfolios (Vivian and 

Wohar (2012)). Indeed, the scale of investment in commodities has surged 

considerably as the commodity markets are increasingly viewed as 

alternative investment areas (see Arouri et al. (2012); Kaltalioglu and 

Soytas (2011)). Thus, due to the considerable growth in financial and 

commodity markets and the substantial development of complex financial 

instruments, there is a growing necessity for theoretical and empirical 

studies on the volatility of commodity prices (see Franses and McAleer 

(2002); Morimune (2007)). In fact, volatility of asset prices is a 

fundamentally important concept. A study by Daly (2008), inter alia, 

discusses the importance of volatility modeling in some depth.  

 

Since the conditional variance (volatility) is not directly 

observable, there is a need for using models where the volatility measure 

plays a central role (Morimune (2007)). The commonly employed models 

for estimating conditional variances are the (Generalized) Autoregressive 

Conditional Heteroskedasticity, or (G)ARCH, class of models advocated by 

Engle (1982) and Bollerslev (1986) and stochastic volatility (SV) models 

initially proposed by (Taylor, 1986). Here it is worth noting that, as an 

alternative to the GARCH family models, in stochastic volatility models, 

the conditional variance is specified to follow some latent stochastic process 

(Kim et al. (1998); Tsay (2010)). As noted by Broto and Ruiz (2004), 

despite an intuitive appeal of stochastic volatility models, their empirical 

application has been limited mainly because of computational difficulty 

involved in their parameter estimation. Here, the main issue is that the 

likelihood function is hard to evaluate because, unlike the estimation of 

GARCH family models, maximum likelihood (ML) technique has to deal 

with more than one stochastic error processes. However, unlike SV models, 

the success of GARCH family models can be attributed largely to their 

computational tractability and ability to capture a number of stylized facts 

of financial time series (Morimune (2007)). The examples for usual stylized 

facts in financial time series are time-varying volatility, volatility clustering 

and persistence, long-range memory, and asymmetric responses of volatility 

to negative and positive shocks of a similar magnitude.  
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In addition, a heavy-tailedness feature of stochastic errors (or 

return process) can be taken into account by utilizing heavy-tailed 

conditional densities. The consideration of these stylized facts in return 

process is important in describing the dynamics of the asset returns 

adequately which, in turn, is crucial to obtain accurate predictions of the 

future volatility. Hence, the primary objective of this study is to analyze 

alternative GARCH class of volatility models for palm oil prices with the 

consideration of the specific stylized facts in price return process.  

 

The relatively recent studies that use the GARCH family models 

for the analysis of agricultural commodity price volatility include Yang et 

al. (2001), Jin and Frechette (2004), Dahl and Iglesias (2009), Rezitis and 

Stavropoulos (2010), Chang et al. (2011), Serra (2011), Vivian and Wohar 

(2012) among others. To the extent of our knowledge, the closest published 

paper to ours is that of Jin and Frechette (2004). In their paper, the authors 

attempt to model the volatility of agricultural futures prices via the GARCH 

and FIGARCH specifications. The model comparison analysis is mainly 

based on the computed Ljung-Box-Q test statistics. Their finding suggests 

the validity of the FIGARCH(1, �, 1) model for agricultural futures prices. 

Here, several differences between our study and that of Jin and Frechette 

(2004) are worth noting. First, in Jin and Frechette (2004), the quasi 

maximum likelihood estimations are conducted assuming Gaussian 

distribution while our study considers four alternative conditional densities 

including the symmetric and asymmetric heavy-tailed distributions. Second, 

to model the long-range memory, the authors use the FIGARCH model 

which has some weaknesses i.e. positivity constraints for the parameters, 

symmetry of the responses of conditional variances to negative and positive 

shocks of equal magnitude. In contrast, we have employed the FIEGARCH 

model that can address the weaknesses of usual FIGARCH model. Third, in 

addition to the long memory models, we have also considered the standard 

GARCH, EGARCH, GJR-GARCH, and APGARCH in the estimations with 

four alternative distributions for each model.  

 

The plan of the rest of the study is as follows. First, we describe 

the data set and provide some discussions on preliminary data analysis. 

Second, the models under concern and their some theoretical and empirical 

properties are discussed. Third, the results are presented. The final section 

offers concluding remarks.  
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2. DATA AND PRELIMINARY ANALYSIS  

This study uses monthly data extending over the period of January 

1980 through December 2011. The nominal prices are in US Dollars per 

metric ton and obtained from the online statistical services of International 

Monetary Fund.  

Table 1 reports summary statistics for the logarithmic returns. The 

return series are computed by using the first logarithmic differences of 

monthly palm oil prices. As can be seen, the skewness and kurtosis 

coefficients show that the unconditional distribution of the returns is 

negatively skewed with an excess kurtosis. The significant excess kurtosis 

suggests that the return series are conditionally heteroskedastic. Both 

Jarque-Bera and Anderson-Darling test statistics reject the null hypothesis 

of normality. Moreover, the Ljung-Box Q statistics for the returns as well as 

squared returns indicate that the series exhibit linear dependence and strong 

ARCH effects respectively. All in all, for the sample size considered in this 

study, the price returns under study are strongly conditionally 

heteroskedastic and, therefore, GARCH class of models can be useful in the 

empirical estimations. 

 
TABLE 1: Summary statistics for palm oil price returns 

 

 

Mean 0.1493 

Median 0.4606 

Maximum 29.032 

Minimum -31.582 

Standard Deviation 8.0189 

Skewness -0.0932 

Kurtosis 4.8564 

Jarque-Bera 55.550 [0.000] 

Anderson-Darling 2.3007 [0.000] 

Q(12) 68.906 [0.000] 

Q2(12) 48.470 [0.000] 

The figures in the square brackets are p-values. The Jarque-Bera and Anderson-Darling tests 

are for normality. Q(12) and Q2(12) denote Ljung-Box Q test statistics at lag 12 for returns 

and squared returns respectively. The BDS test is for series independence. In this test, the 

embedding dimension is set to 2 whereas the distance between pairs of consecutive 

observations is set to be 1.  

 

Since adequate GARCH estimations require that the series 

employed in the models are stationary, we test for a unit root by utilizing a 

number of usual unit root tests (augmented Dickey-Fuller, Phillips-Perron, 

and Dickey-Fuller GLS) for the logarithmic price returns. In all cases, the 

tests reject the null hypothesis of the presence of unit root at one percent 

significance level and thus the returns follow a stationary process, 

regardless of whether a trend variable and/or intercept term is incorporated 
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in the model. Hence, in the empirical analysis that follows we treat returns 

as an I(0) process. The results for unit root tests are not reported here due to 

space consideration.  

3. MODELS 

In this section, we describe the statistical models that are used for 

our statistical estimations. 

 

The Standard GARCH Model 

Although the ARCH model of Engle (1982) is simple, it usually requires 

many parameters to sufficiently describe the volatility process of price 

returns. For this purpose, Bollerslev (1986) develops a useful specification 

so-called the generalized ARCH (GARCH) model. For a logarithmic return 

series �� , let �� = �� − 	�  be the innovation at time 
 . Then, the 

GARCH��, � model can be expressed as: 

 

�� = ����, ��� = � + ∑ ���
��� ����� + ∑ ���

��� �����    (1) 

 
where ��  is a sequence of independently and identically distributed (iid) 

random variables with mean 0 and unit variance, � > 0, �� ≥ 0, �� ≥ 0, 

and ∑ ��� + ���!"#$�,�%
��� < 1. It can be seen that �� = 0 for ' > �, �� = 0 

for ( > . The various aspects of theoretical properties of standard GARCH 

model have been considered in a number of studies (see Bollerslev (1986); 

Giraitis et al. (2009); Jeantheau (1998); Lee and Hansen (1994); Ling and 

Li (1997); Ling and McAleer (2002a); Ling and McAleer (2003); Lindner 

(2009); McAleer et al. (2007); Robinson (1991) and Zivot (2009)). The Eq. 

(1) reduces to ARCH��  model when � = 0 . The ��  and ��  are called 

ARCH and GARCH parameters respectively. In Eq. (1), the ARCH (or ��) 
effect implies the contribution of shocks to short run persistence, while the 

GARCH (or �� ) effect shows the contribution of shocks to long-run 

persistence (McAleer et al. (2007)).  

 

It is worth noting that although both theoretical and empirical literature on 

standard GARCH models is enormous, however, the GARCH model 

encounters several weaknesses. For instance, it does not capture the 

possible asymmetries in the financial volatility i.e. it responds equally to 

positive and negative shocks. In addition, the GARCH model requires that 

all the parameters in the variance equation must be positive in order to 

guarantee the strict positivity of conditional variances. The literature 
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proposes a number of alternative formulations to address each of these 

weaknesses of standard GARCH model. We discuss several of them in next 

subsections. 

The Exponential GARCH Model 

To address some of the aforementioned weaknesses of the standard 

GARCH model in handling financial time series, Nelson (1991) proposes 

so-called the EGARCH model. To allow for asymmetric responses of 

conditional variances to positive and negative shocks of a similar 

magnitude, the author relies on the following weighted innovation: 

 

)���� = *��� + *�+|��| − -�|��|�. (2) 

 

where *� and *� are real constants. Both sequences �� and +|��| − -�|��|�. 
are iid with zero mean. Thus, -+)����. = 0. One may see an asymmetry by 

rewriting the Eq. (2) as: 

 

  )���� = /�*� + *���� − *�-�|��|� if �� ≥ 0,
�*� − *���� + *�-�|��|� if �� < 0  (3) 

 

where -�|��|�  depends on the assumption made on the conditional 

probability density function of �� . Similar to the ARMA representation, 

Nelson (1991) expresses the general form of EGARCH��, �  model as 

follows: 

 

ln����� = � + 1 + ��5 + ⋯ + ����5���

1 − ��5 − ⋯ − ��5�  )������ (4) 

 

where � constant, 5 is a lag operator, and 1 + ��5 + ⋯ + ����5���  and 

1 − ��5 − ⋯ − ��5� are polynomials with zeros outside the unit circle and 

have no common factors. Nelson (1991) has observed that stationarity and 

ergodicity for EGARCH(1,1) are ensured when |�| < 1 . In addition, 

Shephard (1996) argues that the QMLE for EGARCH(1,1) is consistent if 

inequality |�| < 1 holds. 
 

The GJR-GARCH Model 

The GJR-GARCH model of Glosten et al. (1993) is another extension of 

standard GARCH model that accommodates possible differential effect of 

positive and negative shocks on conditional volatility. This model can be 

specified as 
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  ℎ� = � + ∑ 8�� + 9�:;���� > 0<=������
��� + ∑ ��ℎ����

���  (5) 

 

where � > 0, �� ≥ 0, �� + 9� ≥ 0, �� ≥ 0, and :;���� > 0< is an indicator 

function which obtains the value of one when ���� > 0 and takes zero when 

the argument is not true. As can be seen, an asymmetric effect in the series 

is captured by the parameter 9�. Moreover, as McAleer et al. (2007) note, 9� 

measures the contribution of shocks to short-run and long-run persistence. 

The necessary and sufficient condition for the existence of second moment 

of �� for GJR-GARCH(1,1) model is given in Ling and McAleer (2002b). 

 

The Asymmetric Power GARCH Model 

Ding et al. (1993) proposed an asymmetric power GARCH model which 

includes seven other ARCH extensions as particular cases. The APGARCH 

model is given by: 

 

�� = >�?ℎ�,    ��@ = � + ∑ ���
��� �|����| − 9������@ + ∑ ������@�

���  (6) 

 

where A is the power parameter and 9 is an asymmetric parameter. Indeed, 

the power term can obtain any positive value in the variance equation and 

the financial returns still demonstrate the volatility clustering. As we have 

seen from the models discussed earlier, the preference is usually given to 

squared terms and a power of one. This is due to the fact that the returns are 

traditionally assumed to follow a normal distribution. As commonly noted, 

the first two moments can fully describe the Gaussian distribution and 

squared or absolute residuals can be employed as a proxy for the volatility 

process if the data is normally distributed (Ané and Ureche-Rangau (2006)). 

However, over the last few decades, a vast literature which followed by the 

pioneering work of Mandelbrot (1963) suggests that the empirical 

distributions of financial return series display the heavy-tailed feature. As 

noted by Ané and Ureche-Rangau (2006), other power transformations 

might be adequate rather than squared or absolute terms if an underlying 

return process is heavy-tailed. Here one may note that squared or absolute 

terms in the second moments of general GARCH class of models may not 

necessarily be optimal. Thus, the APGARCH model of Ding et al. (1993) 

might be useful parameterization as it allows an optimal power to be 

estimated directly from data rather than imposed. In addition, by 

considering a special APGARCH model, Ling and McAleer (2002a) 

showed the necessary and sufficient conditions for the existence of 

moments. 
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The Fractionally Integrated GARCH Models 

As usually noted (see, among others, Fantazzini (2011) and Tsay (2010)), 

there exist some time series processes whose ACF (autocorrelation 

function) decays slowly to zero at a polynomial rate as the lag increases. In 

Econometrics literature, these processes are referred to as long-memory 

feature.  

 

A vast literature on conditional volatility suggests that the GARCH model 

of Bollerslev (1986) and EGARCH model of Nelson (1991) have been 

found to be successful parameterizations for characterizing asset return 

volatility. The usual finding in many studies with both of these models 

concerns the high persistence of the conditional volatility processes 

(Bollerslev and Mikkelsen (1996)). For this purpose, Engle and Bollerslev 

(1986) proposed so-called Integrated GARCH (IGARCH) class of models. 

As noted in Bollerslev and Mikkelsen (1996), in the IGARCH model, a 

shock to a conditional volatility remains crucial for the optimal forecasts of 

the conditional variances for all future horizons. At this stage, it is useful to 

show the difference between IGARCH and the fractionally integrated 

GARCH (FIGARCH) model proposed by Baillie et al. (1996).  

 

The IGARCH��, � formulation can be expressed as: 

 

B�C��1 − C���� = � + +1 − ��C�.>� (7) 

 

The FIGARCH model can be obtained from this equation by replacing the 

�1 − C� operator with the fractional differencing operator �1 − C�D:  

 

B�C��1 − C�D��� = � + +1 − ��C�.>� (8) 

 

It is important to emphasize that the covariance-stationary standard 

GARCH model and the IGARCH formulation are naturally analogues to the 

I(0) and I(1) type processes for conditional mean respectively (Bollerslev 

and Mikkelsen (1996)). In addition, literature generally suggests that an 

added flexibility can be obtained by allowing I���. The shocks die out at an 

exponential rate in I(0) process whilst there is no mean reversion in I(1) 

process. In contrast, in fractionally integrated, I���, process with 0 < � <
1, shocks dissipate at a slow hyperbolic rate (Tsay ( 2010)).  
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To increase the flexibility of fractionally integrated models, Bollerslev and 

Mikkelsen (1996) extended the EGARCH model of Nelson (1991) to allow 

for fractional orders of integration. The resulting model is called a 

fractionally integrated exponential GARCH (FIEGARCH) model. As we 

have mentioned earlier, the EGARCH model with the use of lag 

polynomials can be written as: 

 

  �� = ����,   ln����� = � + +1 − ��C�.�� +1 + ��C�.)������ (9) 

 

By factorizing the autoregressive polynomial +1 − ��C�. = E�C��1 − C�D, 

one may obtain the FIEGARCH ��, �, �  model by Bollerslev and 

Mikkelsen (1996).  

 

 ln����� = � + E�C����1 − C��D  +1 + ��C�.)������ (10) 

 

This specification includes EGARCH model when � = 0  and integrated 

EGARCH (IEGARCH) model when � = 1  as particular cases. An 

important feature of this formulation is that in contrast to FIGARCH model, 

the parameters for the FIEGARCH models do not require the non-negativity 

constraints in order for the model to be well-defined.  

 

In the empirical examination, four conditional distributions for the 

standardized residuals of returns innovations have been used: (i) a standard 

normal (N), (ii) a standardized Student 
  (ST), (iii) a generalized error 

distribution (GED), (iv) a skewed Student 
  distribution (SST). 

Accordingly, five competing model specifications in modeling volatility of 

the palm oil price returns are constructed in the comparative analysis: 

GARCH, EGARCH, GJR-GARCH, APGARCH, FIEGARCH. 

 

4. RESULTS AND DISCUSSIONS 

In this section, the estimation results for four aforementioned 

models are discussed. For space considerations, the estimation results for 

the EGARCH-N, EGARCH-ST, EGARCH-GED, APGARCH-ST, 

APGARCH-GED, APGARCH-SST, and FIEGARCH-SST are not 

discussed due to the numerical convergence failure. The quasi maximum 

likelihood estimates are obtained by using the numerical algorithm so-

called BFGS (Broyden, Fletcher, Goldfarb, Shanno) quasi-Newton method 

described in Press et al. (2007). As noted in Bollerslev and Mikkelsen 

(1996), discontinuous trading in the markets may result in significant serial 
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dependence in the returns. Hence, in order to account for such serial 

dependence, following Bollerslev and Mikkelsen (1996), we have 

parameterized the conditional mean for all the estimated models as an 

unrestricted AR(3) model. We begin the analysis by first discussing the 

standard GARCH model estimations that are reported in Table 2. All the 

parameters in both conditional mean and variance equations are statistically 

significant at conventional levels except for a few cases. Turning to the 

goodness-of-fit tests, our results suggest that we do not reject the null 

hypothesis of an adequate model specification for palm oil price returns 

since the computed Ljung-Box and ARCH test statistics at different lags 

show no serial correlation and no remaining ARCH effects in standardized 

(��̂�G���) and squared standardized (��̂��G���) residuals. 

 

Importantly, the positivity constraint for the parameters of the 

variance equations is satisfied in all the estimated standard GARCH 

models. In addition, all estimated GARCH(1,1) models with four 

conditional densities do not fail to satisfy the second ��G + �H < 1�  and 

fourth moment ( ��G + �H�� + 2�G� < 1 ) conditions. Interestingly, all the 

models have high estimated �G values, and relatively low estimated �H  values, 

which reflect high levels short-run persistence. All in all, the estimated 

standard GARCH models have been found to describe the volatility 

phenomenon in palm oil price returns adequately. Nevertheless, both 

selection criteria (AIC and SIC) reported in Table 2, give slight preference 

to the GARCH(1,1) with generalized error distribution. In this model, the 

estimates of tail-thickness parameter, J , has been found to be highly 

significant and less than two indicating that the innovations have thicker 

tails than the normal distribution. Another advantage of assuming the 

heavy-tailed generalized error distribution in GARCH estimations is that 

the empirical validity of normality can be tested (Bali and Theodossiou 

(2007)). Moreover, the results indicate that the double exponential or 

Laplace distribution with tail-thickness parameter J = 1 is likely to be more 

appropriate than the Gaussian distribution with a degree of freedom J = 2. 
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TABLE 2: Estimates for standard AR(3)-GARCH (1,1) model 

 
 GARCH-N GARCH-ST GARCH-GED GARCH-SST 

     

	K  0.3188 [0.500] 0.3806 [0.395] 0.4459 [0.354] 0.3008 [0.523] 

	�  0.4310 [0.000] 0.3987 [0.000] 0.3987 [0.000] 0.3983 [0.000] 

	�  -0.3049 [0.000] -0.2852 [0.000] -0.2826 [0.000] -0.2880 [0.000] 

	L  0.1639 [0.001] 0.1560 [0.004] 0.1483 [0.012] 0.1573 [0.004] 

�  3.5387 [0.068] 3.1222 [0.071] 3.3536 [0.069] 3.1682 [0.066] 

�  0.1169 [0.009] 0.1064 [0.015] 0.1093 [0.013] 0.1055 [0.015] 

�  0.8202 [0.000] 0.8416 [0.000] 0.8323 [0.000] 0.8413 [0.000] 

J (Tail) - 6.9473 [0.007] 1.3537 [0.000] 6.9304 [0.007] 

M (Asy.) - - - -0.0359 [0.549] 

     

AIC 6.7706 6.7505 6.7425 6.7551 

SIC 6.8434 6.8337 6.8256 6.8486 

     

Q(10) 11.725 [0.109] 12.895 [0.075] 12.849 [0.075] 12.951 [0.073] 

Q(20) 21.836 [0.191] 23.361 [0.137] 23.428 [0.136] 23.337 [0.138] 

Q2(10) 4.3455 [0.825] 4.8001 [0.778] 4.6847 [0.791] 4.7444 [0.784] 

Q2(20) 10.187 [0.925] 10.087 [0.929] 10.021 [0.931] 9.9298 [0.934] 

ARCH 1-2 0.7927 [0.453] 0.9328 [0.394] 0.8851 [0.413] 0.9044 [0.405] 

ARCH 1-5 0.7195 [0.609] 0.8287 [0.529] 0.8165 [0.538] 0.8073 [0.545] 

The Table reports Quasi Maximum Likelihood Estimates (QMLE) for the monthly returns on the 

palm oil prices from February, 1980 through December, 2011, for a total of 383 observations. 

Figures inside the square brackets are p-values. AIC and SIC refer to the Akaike and Schwarz 

Information Criterion, respectively. The values of Ljung-Box portmanteau test statistics for up to 

N th order serial correlation in the standardized residuals, ��̂�G��� , and squared standardized 

residuals, ��̂��G��� , are denoted by Q(N ) and Q2(N ), respectively. The ARCH test inspects the 

presence of heteroscedasticity.  

 

The estimation results for GJR-GARCH(1,1) are presented in Table 

3. Here also the positivity constraint for the coefficients of the second 

moment equations is satisfied in all the estimated GJR-GARCH(1,1) 

models. Moreover, all estimated GJR-GARCH(1,1) models with four 

conditional densities satisfy the second ��G + �H + 0.59G < 1�  and fourth 

moment ( �H� + 2�G�H + 3�G� + �H9G + 3�G9G + 1.59G� < 1 ) conditions. With 

respect to standardized and squared standardized residuals, the computed 

Ljung-Box Q statistics give clear indication of no serial dependence, and 

the Engle’s (1982) Lagrange multiplier statistics offer significant evidence 

of no remaining ARCH effects. Hence, these statistics imply that the GJR-

GARCH models assuming four conditional densities are well specified.  

 

 

 

 

 

 



Akram Hasanov & Mahendran Shitan 

 

26 Malaysian Journal of Mathematical Sciences 

 

TABLE 3: Estimates for AR(3)-GJR-GARCH (1,1) model 

 
 GJR-GARCH-N GJR-GARCH-

ST 

GJR-GARCH-

GED 

GJR-GARCH-

SST 

     

	K  0.2909 [0.542] 0.3538 [0.431] 0.4230 [0.389] 0.2718 [0.566] 

	�  0.4297 [0.000] 0.3972 [0.000] 0.3973 [0.000] 0.3972 [0.000] 

	�  -0.3057 [0.000] -0.2838 [0.000] -0.2819 [0.000] -0.2865 

[0.000] 

	L  0.1666 [0.001] 0.1563 [0.004] 0.1494 [0.013] 0.1580 [0.004] 

�  3.5443 [0.059] 3.1277 [0.057] 3.3512 [0.056] 3.1684 [0.052] 

�  0.1049 [0.052] 0.0853 [0.125] 0.0917 [0.080] 0.0842 [0.127] 

�  0.8218 [0.000] 0.8451 [0.000] 0.8348 [0.000] 0.8451 [0.000] 

9  0.0195 [0.754] 0.0333 [0.565] 0.0284 [0.623] 0.0336 [0.559] 

J (Tail) - 6.8371 [0.007] 1.3524 [0.000] 6.8136 [0.007] 

M  
(Asym.) 

- - - -0.0364 

[0.544] 

     

AIC 6.7756 6.7550 6.7472 6.7595 

SIC 6.8587 6.8485 6.8407 6.8634 

     

Q(10) 11.610 [0.114] 12.707 [0.079] 12.671 [0.080] 12.731 [0.079] 

Q(20) 21.681 [0.197] 23.153 [0.144] 23.221 [0.142] 23.095 [0.146] 

Q2(10) 4.3532 [0.824] 4.9680 [0.761] 4.7786 [0.781] 4.9377 [0.764] 

Q2(20) 10.312 [0.921] 10.394 [0.918] 10.248 [0.923] 10.274 [0.923] 

ARCH 1-

2 

0.6697 [0.512] 0.7037 [0.495] 0.6900 [0.502] 0.6791 [0.507] 

ARCH 1-

5 

0.7331 [0.599] 0.8859 [0.490] 0.8538 [0.512] 0.8691 [0.502] 

The Table reports Quasi Maximum Likelihood Estimates (QMLE) for the monthly returns 

on the palm oil prices from February, 1980 through December, 2011, for a total of 383 

observations. Figures inside the square brackets are p-values. AIC and SIC refer to the 

Akaike and Schwarz Information Criterion, respectively. The values of Ljung-Box 

portmanteau test statistics for up to N th order serial correlation in the standardized 

residuals, ��̂�G��� , and squared standardized residuals, ��̂��G��� , are denoted by Q(N ) and 

Q2(N), respectively. The ARCH test inspects the presence of heteroscedasticity.  

 
However, the asymptotic 
-ratio for the 9  estimate in all GJR-

GARCH models is not significant. In addition, the magnitude of 9 estimates 

is much smaller than the � estimate, which indicates that negative shocks 

do not seem to have a significant impact on the conditional variances than 

positive shocks. Importantly, the models satisfy the condition that �G + 9G >
0 in all cases which implies that the positivity of the conditional variances 

associated with the negative shocks is guaranteed.  

 

Similar to the standard GARCH models, both reported selection 

criteria suggest that GJR-GARCH(1,1) model under generalized error 

distribution is favored over the rest of estimated models assuming Gaussian, 

Student 
 and skewed Student 
 distributions.  
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The estimated tail-thickness parameter of generalized error 

distribution has been found to be statistically highly significant. This 

strongly indicates that the stochastic errors of return process follow the 

heavy-tailed distribution rather than the normal distribution. This fact is 

also supported with the estimated degree of freedom of Student 
 

distribution. Furthermore, although there is an evidence of fat-tailedness in 

the return process, however, there seems to be negligible evidence for 

skewness features. Skewness characteristics of innovations can be seen 

from the significance levels of estimated skewness parameter ln�M� when 

the GARCH models estimated assuming skewed 
 distribution.  

 

As far as the APGARCH models are considered, to simplify the 

layout of the Table 4, we only report the results pertaining to the 

APGARCH model assuming Gaussian distribution that has achieved the 

numerical convergence in the maximum likelihood optimization. Note that, 

based on serial dependence tests, AR(3) specification has been selected for 

the conditional mean of palm oil price returns. Several points are worth 

mentioning. The magnitude of parameter �H  is close to 1 but statistically 

different from 1 which indicates that a high degree of volatility persistence.  

 
Moreover, the estimated APGARCH model is stationary in the 

sense that ��-�|>�| − 9>��@ + �� is less than 1. The power parameter A is 

close to 1 and statistically different from 2. For palm oil price returns, 9 is 

positive but not statistically different from zero. Thus, negative returns do 

not seem to lead to higher subsequent volatility than positive returns. The 

AR(3)-APGARCH assuming normal distribution succeeds in accounting for 

all the dynamical structure exhibited by the returns and the conditional 

variance of returns as the computed Ljung-Box test statistics on the 

standardized residuals and the squared standardized residuals are 

nonsignificant at 5% significance levels. And, there are no further signs of 

heteroskedasticity according to the ARCH LM test statistics. As shown in 

Table 4, the �  estimate from AR(3)-EGARCH(1,1) for palm oil price 

returns is less than one in absolute value, which indicate that all moments 

exist. As we have mentioned earlier, there is no parametric restriction for 

the conditional variance to be positive, as EGARCH is model of the 

logarithm of the conditional variances. The numerical convergence has been 

achieved only in AR(3)-EGARCH assuming skewed Student 
 distribution.  
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One may note that neither sign �*��  nor size �*��  effect 

parameters seem to have a statistically significant impact on conditional 

variances. In fact, the values of computed Ljung-Box and ARCH LM test 

statistics at various lags support the adequacy of both specified conditional 

mean and variance equations. With regard to the parameters of skewed 
 

distribution, although the tail parameter J has been found statistically highly 

significant, asymmetric parameter ln�M� is not significant. This indicates 

that heavy tailed asymmetric conditional distribution (skewed 
) does not 

seem to be fully adequate for EGARCH(1,1) model.  

 
TABLE 4: Estimates for AR(3)-APGARCH (1,1)-N and EGARCH-SST models 

 

 APGARCH-N EGARCH-SST 

   

	K  0.2946 [0.531] 0.2220 [0.606] 

	�  0.4311 [0.000] 0.3985 [0.000] 

	�  -0.3177 [0.000] -0.2783 [0.000] 

	L  0.1699 [0.001] 0.1483 [0.004] 

�  0.6382 [0.636] 3.9681 [0.000] 

�  0.1205 [0.012] -0.0533 [0.931] 

�  0.8304 [0.000] 0.9036 [0.000] 

9  0.0908 [0.669] - 

A  1.0659 [0.358] - 

*�  - -0.0387 [0.473] 

*�  - 0.2124 [0.146] 

J (Tail) - 4.9141 [0.004] 

M (Asym.) - -0.0346 [0.602] 

   

AIC 6.7769 6.7449 

SIC 6.8705 6.8592 

   

Q(10) 10.317 [0.171] 8.2088 [0.314] 

Q(20) 20.366 [0.256] 18.337 [0.367] 

Q2(10) 4.7528 [0.783] 4.7444 [0.784] 

Q2(20) 10.305 [0.921] 9.9298 [0.934] 

ARCH 1-2 0.6791 [0.507] 0.9044 [0.405] 

ARCH 1-5 0.7968 [0.552] 0.8073 [0.545] 

 

The Table reports Quasi Maximum Likelihood Estimates 

(QMLE) for the monthly returns on the palm oil prices from 

February, 1980 through December, 2011, for a total of 383 

observations. Figures inside the square brackets are p-values. 

AIC and SIC refer to the Akaike and Schwarz Information 

Criterion, respectively. The values of Ljung-Box portmanteau 

test statistics for up to N th order serial correlation in the 

standardized residuals, ��̂�G��� , and squared standardized 

residuals, ��̂��G���, are denoted by Q(N) and Q2(N), respectively. 

The ARCH test inspects the presence of heteroscedasticity.  
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Table 5 provides the estimation results of AR(3)-

FIEGARCH(1, � ,1) assuming normal, Student 
 , and generalized error 

distributions.  

 
TABLE 5: Estimates for AR(3)-FIEGARCH (1,1) model 

 

 FIEGARCH-N FIEGARCH-ST FIEGARCH-GED 

    

	K  -0.1069 [0.813] 0.3239 [0.437] 0.2953 [0.557] 

	�  0.4672 [0.000] 0.4002 [0.000] 0.4198 [0.000] 

	�  -0.3651 [0.000] -0.2802 [0.000] -0.3051 [0.000] 

	L  0.1682 [0.008] 0.1477 [0.003] 0.1617 [0.010] 

�  2.9483 [0.045] 4.0575 [0.000] 2.8074 [0.154] 

�  0.8724 [0.001] 0.1462 [0.654] 0.8193 [0.011] 

�  0.6683 [0.211] -0.1778 [0.758] 0.6943 [0.048] 

�  -0.8851 [0.000] 0.8876 [0.000] -0.8755 [0.000] 

*�  0.0216 [0.726] -0.0331 [0.524] -0.0059 [0.922] 

*�  0.4248 [0.002] 0.2013 [0.177] 0.4087 [0.000] 

J (Tail) - 5.0787 [0.000] 1.3472 [0.000] 

M (Asym.) - - - 

    

AIC 6.7943 6.7447 6.7611 

SIC 6.8982 6.8590 6.8753 

    

Q(10) 11.565 [0.116] 8.8659 [0.262] 11.372 [0.123] 

Q(20) 23.340 [0.138] 19.156 [0.319] 24.645 [0.103] 

Q2(10) 7.7058 [0.463] 0.9348 [0.998] 8.6967 [0.368] 

Q2(20) 12.874 [0.799] 3.2315 [0.999] 14.128 [0.721] 

ARCH 1-2 1.4694 [0.231] 0.1075 [0.898] 1.4915 [0.226] 

ARCH 1-5 0.8087 [0.544] 0.1342 [0.897] 1.1725 [0.322] 

The Table reports Quasi Maximum Likelihood Estimates (QMLE) for the monthly 

returns on the palm oil prices from February, 1980 through December, 2011, for a 

total of 383 observations. Figures inside the square brackets are p-values. AIC and 

SIC refer to the Akaike and Schwarz Information Criterion, respectively. The values 

of Ljung-Box portmanteau test statistics for up to Nth order serial correlation in the 

standardized residuals, ��̂�G��� , and squared standardized residuals, ��̂��G��� , are 

denoted by Q(N) and Q2(N), respectively. The ARCH test inspects the presence of 

heteroscedasticity. 

 

 

However, the model with the skewed Student 
 does not achieve 

the numerical convergence. The FIEGARCH models under Gaussian and 

GED densities are able to capture the long memory feature of palm oil price 

return volatilities as the long-memory parameters ��� reject null hypothesis 
�� = 0� at 5% significance level. With reference to the AIC and SIC, the 

estimation results show that the FIEGARCH model with Student 
 

innovations seems to perform better than that with GED. Turning to the 

goodness-of-fit tests, our results suggest that we do not reject the null 

hypothesis of a correct model specification for palm oil price returns 
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because Ljung-Box Q and ARCH LM tests show no serial correlation and 

no remaining ARCH effects. 

 

In addition, the tail parameters of Student 
 , and GED are 

statistically highly significant indicating that the innovations’ distribution is 

leptokurtic. Like all other estimated asymmetric models above, asymmetries 

in the volatility are not detected since the asymmetric parameter *� is not 

found to be significantly different from zero.  

 

5. CONCLUSION 

Modeling agricultural commodity prices remains one of the 

stubborn challenges in economics and finance as it becomes important in 

hedging models, option pricing, and computations of value-at-risk 

measures. For this reason, we have attempted to model the conditional 

volatility of palm oil prices by taking into consideration a number of 

stylized facts in the return process. To accomplish this, five competing 

models are estimated: the standard GARCH, EGARCH, GJR-GARCH, 

APGARCH, and FIEGARCH. The quasi maximum likelihood estimations 

are based on four alternative conditional densities such as normal, Student 


, GED, and skewed Student 
. Several findings emerge from this study. 

First, the estimated standard GARCH(1,1) models have been found to 

describe the volatility dynamics of palm oil prices adequately. The selection 

criteria give slight preference to the GARCH(1,1) under GED distribution. 

Second, the estimated GJR-GARCH(1,1) models assuming four alternative 

conditional densities have been found to be well-specified. According to 

two selection criteria considered in this study, the GJR-GARCH(1,1) model 

with GED is favored over the rest of the GJR-GARCH(1,1) models. Third, 

the likelihood function faces the numerical convergence problems in 

APGARCH assuming Student 
 , GED, skewed Student 
  distributions, 

EGARCH assuming skewed 
  density, and FIEGARCH with skewed 
 

distribution. Asymmetric model estimates suggest that there is a very little 

evidence for asymmetric effects in palm oil returns. Lastly, as far as the 

conditional distributions are concerned, the symmetric fat-tailed 

distributions (Student 
 or GED) are found to be preferred to Gaussian and 

skewed 
 distributions.  
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