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ABSTRACT 

It is known that there exists 2N + 1 mutually unbiased bases for N qubits system. 

Between the different MUB construction algorithms of the three-qubit case, we focus 

on Wootters method with discrete phase space that leads naturally to a complete set 

of 2N + 1 mutually unbiased bases for the state space. We construct discrete Wigner 

function using mutually unbiased bases from the discrete phase space for three-qubit 

system by explicitly calculating the Wigner functions for exemplary three-qubit pure 

states such as the GHZ state, the W state and the embedded Bell state. We also 

highlight some quasi-probability characteristics of these entangled states. 

 

Keywords:  Qubit, MUB, Discrete Wigner function, GHZ state, W state, Bell state. 

 

1. INTRODUCTION 

The Wigner function based on continuous phase space is an 

alternative way of representing quantum states and it serves the role of a 

quasi-probability distribution whose values can be negative. In the same 

way as the original Wigner function, Wootters (1987), Wootters (2004) and 

Gibbons et al. (2004) constructed Wigner functions on discrete phase 

spaces to describe finite-dimensional quantum systems. For determining 

this discrete phase space, they labeled the axes of phase space with finite 

field (Galois field) of N elements where N is power of prime. For example, 
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the system of two qubits described by a state space whose dimensionality is 

N=2
2
, meets this condition, and this leads to five different striations (in 

phase space, any set of parallel lines is called a “striation” of the phase 

space). Equivalently they labeled the horizontal and vertical axes of their 

phase space by quantum states of two-qubit system. From this labeling and 

using suitable translation vectors, one can produce five mutually unbiased 

bases for the state space.  

 

Romero et al. (2005) and Björk et al. (2007) have shown that there 

are other approaches to MUB construction for the three-qubit case and there 

exist four different MUB structures, with respect to their entanglement 

properties. They have forms of (3,0,6), (2,3,4), (1,6,2), and (0,9,0), where 

the digits represents the number of triseparable , biseparable, and non 

separable bases, respectively. Their construction of MUBs is mainly based 

on the use of the finite Fourier transform, employing the Pauli operators and 

tensor products. In this paper our intent is to extend Wootters MUB 

construction method that is naturally based on properties of phase space for 

three-qubit case. Applying this method, we will explicitly discuss one of 

those four different structures with (3,0,6) form, where three of the bases 

are fully separable, and the remaining six bases are nonseparable. This is 

the only structure which has the "visually straight" lines in their striations, 

where each line obeys equations aq + bp = c as we describe in following 

section. After finding the appropriate Galois field and translation vectors for 

the three-qubit system, we get nine sets of striations while each of them has 

eight parallel lines. Based on these striations we will obtain the nine 

mutually unbiased bases for the Hilbert space. In the paper, we will use 

those definitions found in Wootters (1987), Wootters (2004), Gibbons et al. 

(2004), Paz et al. (2005), Nielsen and Chuang (2010) and Kaye et al.  

(2007). 

 

For calculating discrete Wigner function, we have to determine 

appropriate quantum net Q(λ) where λ is a line from one of our bases. There 

are 8
9
 different choices for defining quantum nets of three qubits, but by the 

same method of Gibbons et al (2004) for two qubits using some unitary 

operators, we can reduce our choices to 8
4
 different choices of quantum nets 

(8
4
 similarity classes). Based on eight arbitrary chosen similarity classes, we 

calculate the Wigner functions for exemplary states like GHZ and W states, 

an embedded Bell state which is not completely entangled, and others 

which are demonstrative enough for the discussion of the properties of their 

Wigner functions. Finally we compare phase-space point operators of 
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different quantum nets of three-qubit case with tensor-product of three qubit 

phase-space point operators. 

 

2. LINES AND STRIATIONS IN DISCRETE PHASE SPACE 

In the continuous phase space, lines are defined byaq bp c+ = , 

where all a, b and c are real constants, while the variables p and q that 

form our axes take values in the real numbers. Two lines aq bp c+ =  and 

aq bp c ′+ =  are parallel when c c ′≠ . The same properties and definitions 

can be extended for discrete phase space of n -qubit system by using Galois 

field element of 2n
N = dimension which is associated with the axis of 

discrete phase space. 

 

In our work, we apply Galois field for three-qubit 
3

(2 )GF . In this 

case we take the primitive polynomial to be 
3 2

( ) 1f x x x= + + . Thus, our 

Galois field is 
3 2

2[ ] / 1x x x〈 + + 〉ℤ  [Lidl (1994) and Malik et al. (1997)], 

which leads to the field elements that can be listed as: 
2 3 4 5 6{0,1, , , , , , }w w w w w w , with 

7 1w = . The arithmetic of 
3(2 )GF  is 

shown in the Table 1. 
 

 
TABLE 1: Addition and multiplication tables in GF(8) 

 

 

The state space for three qubits has N = 2
3
 dimensions and hence 

consists of an 8 × 8 arrays of points for its phase space as shown in Figure 

1(a). It can also be seen that we associate axes of our phase space by the 
discrete variables p and q, which take values in ( ) (8)GF N GF= . By these 
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variables, one can form equations of lines ( )aq bp c+ =  in discrete phase 

space where a, b and c are numerical elements of GF(N). 
 

 

Figure 1:  8 × 8 arrays of points of phase space. The axis of phase space associated (a) by the elements 

of GF(N) and (b) spin states 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2:  Nine striations of three-qubit system. The equations of them are q = c,  p = c, 

 q+p = c , q+wp = c, q+w2p = c, q+w3p = c, q+w4p = c, q + w5p = c and q + w6p = c 

respectively 
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For three qubits, substituting a, b and c from the eight elements of 

GF(8), we obtain 72 lines which can be divided into nine sets of parallel 

lines (each set of parallel lines is called a striation of phase space). By 

employing programming in Matlab we have found the striations for three-

qubit system as in Figure 2. 

 

3. MUTUALLY UNBIASED BASES FOR THREE QUBITS 

Consider the association of the bases 
1 2

{ , ,..., }
n

E e e e= and

1 2
{ , ,..., }

n
F f f f= to the horizontal and vertical axes of the phase space 

respectively. Gibbons et al. (2004) showed that if we want to have the same 

bases for horizontal and vertical direction, these two field bases should be 

related to each other by fi=α e'i , where α is an element of GF(N) and e'i is 

an element of E' (the dual of E). In our work, we get the field bases as (e1, 

e2, e3) = (f1, f2, f3) = (1,w,w
3
), while the multiplication factor α is w

5
. Based 

on it we shall define six basic translations operators for phase space as 

 

1 1x z
H I I V I Iσ σ= ⊗ ⊗ = ⊗ ⊗  

w x w z
H I I V I Iσ σ= ⊗ ⊗ = ⊗ ⊗  

3 3x zw w
H I I V I Iσ σ= ⊗ ⊗ = ⊗ ⊗ , 

 

where H and V are operators for the horizontal and vertical translations 

respectively, and their subscripts show the field elements by which one 

translates the phase space points. All other translations can be obtained by 

combining these six basic translations. For instance, translation by vector 

(1,w
6
) is equal to the horizontal translation by 1 and the vertical translation 

by 1 + w + w
3
, so it can be associated with the unitary operator: 

31 1 w z z yw
H VV V iσ σ σ= − ⊗ ⊗ . 

  
Beside association of the axes of our discrete phase space by the 

Galois field elements, one can associate the horizontal axis of phase space 

by the states | , | ,..., | ,↑↑↑〉 ↑↑↓〉 ↓↓↓〉  and the vertical axis by the states 

| , | , ..., |→→→〉 →→←〉 ←←←〉 of three qubits, as shown in Figure 1(b). Now, 

for example, consider a horizontal translation, which interchanges the first 

two columns (0 1)⇔ as well as
5( )w w⇔ , 

2 3( )w w⇔  and
4 6( )w w⇔ . 

These translations correspond to interchanging the third particle state from

↑ to ↓  and vice versa. 
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Now we list the invariance vectors of each set of striation in Table 

2. These translation vectors send points in each line of the striation into 

other points in that line. In other words, under these translations, each line 

of striation is invariant. These translation vectors can be rewritten using the 

six basic translations operators. The simultaneous eigenvectors of the 

invariance operators of each striation constitute the basis which is 

associated with that striation. We obtain nine bases as listed in Table 3. The 

vectors in these nine bases have the property of mutually unbiased bases. 

Note that two orthonormal bases A and A' Hilbert space 
d
ℂ  are called 

mutually unbiased (MUB) if and only if | 1 /a a d′〈 〉 =  holds for all a A∈

and a A′ ′∈ (Klappenecker and Rötteler (2004), Bengtsson (2006) and 

Tselniker et al. (2009)). 
 

TABLE 2: Three-qubit invariance vectors; the sequence of bases corresponds to the order of striations in 

Figure 2. 

 

 

 

4. DISCRETE WIGNER FUNCTION FOR THREE QUBITS 

Each vector of bases in Table 3 can be associated with specific line 

of corresponding striations in Figure 2. This association is completely 

arbitrary and each separate choice is named a quantum net Q(λ). Gibbons et 

al (2004) classify these quantum nets by N
N−1 

equivalent classes. For 

example, there are four similarity classes for two-qubit system. For three 

qubit case there are 8
7
 equivalent classes and must be at least 8

4
 similarity 

classes (because we have 8
3
−8 unit-determinant linear transformations on 

the phase space which shows each similarity class can include at most 8
3
 −8 

equivalent classes). Also there is similarity relation between two quantum 

nets Q and Q' if and only if 
 

                                             '
L L Lαβγ α β γΓ = Γ ,                                            (1) 
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where functions Г and Г' correspond to Q and Q' respectively and L is a 

unit-determinant linear transformation. So we can use function Г to 

characterize different similarity classes. Here, by Maple programming, we 

find eight representatives of Г00γ for the eight arbitrary similarity classes of 

three-qubit system as in Figure 3. 

 
TABLE 3: Nine bases generated by the nine striations. In each vector |V abcdefgh〉 = , the 

numbers a, b, c, d, e, f, g, h are the coefficients of state 

| 000 | 001 | 010 | 101 | 100 | 110 | 011 | 111a b c d e f g h〉 + 〉 + 〉 + 〉 + 〉 + 〉 + 〉 + 〉  .  

A bar over the number shows that it is negative number and 1i = −  
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Figure 3: Eight representative Г  for three qubits. 

 

The definition of discrete Wigner function for n -qubit is 

  

                             [ ( )],W Tr Qα
α λ

ρ λ
∈

=∑                                              (2) 

 

where ρ is density matrix of the system and Q(λ) is a state related to line λ 

(a quantum net).  
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For example, here we calculate discrete Wigner functions for GHZ state 

(Greenberger et al. (1989)), W state (Coffman et al. (2000)) and embedded 

Bell states related to our eight arbitrary similarity classes. This is similar to 

Dür et al. (2000) characterization of all possible kinds of entanglement of 

three qubit pure states; Unentangled states, biseparable ones and two 

different kinds of genuine tripartite entanglement namely the GHZ and W 

state.  

 

 
 

Figure 4: (a) Wigner function representation for GHZ state (b) Four different Wigner 

function representations for W State. 
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Next we consider the state 
�

√�
(| 000 | 011 )〉+ 〉 which is the tensor 

product of state | 0〉 with the Bell state  
�

√�
(| 00 |11 )〉+ 〉  (two different 

Wigner representations of 
�

√�
(| 00 |11 )〉+ 〉  are shown in Figure 5(b) 

[Cormick and Paz (2006) and Franco and Penna (2006)]). By calculating 

Wigner function for 
�

√�
(| 000 | 011 )〉+ 〉  (Figure 6(a)), we compare it with 

Wigner functions of the consistent Bell and | 0〉 state. That the first qubit is 

not entangled with the other pair of qubits, we can determine some features 

of our Wigner function from their individual Wigner functions. For 

example, in Wigner function representation of the Bell state the probability 

of finding states |→←〉  and |←→〉 , |↑↓〉 and |↓↑〉 are zero. Corresponding 

in Wigner function of 
�

√�
(| 000 | 011 )〉+ 〉 , the probability of finding any 

states whose pair of second and third qubits are in each of the above states 

(like |↑↓↑〉 , |↑↑↓〉 , |←←→〉 , ...) are also zero. Despite these similarities, 

one can not construct the whole Wigner function by “crossing” Wigner 

functions of | 0〉  and the Bell state. It is important to note that the freedom 

of choose of the quantum net to be adopted allows for some ambiguity in 

writing down the Wigner function (which is also known for the two-qubit 

case). 

 

 
Figure 5: (a) Wigner function representation for | 0〉 state  and (b) two different Wigner function 

representations for the Bell state 
�

√�
(| 00 | 11 )〉+ 〉 . 
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Figure 6: (a) Wigner function representations for 
�

√�
(| 000 | 011 )〉+ 〉 , (b) 

�

√�
(| 000 | 110 )〉+ 〉  and  

(c)  
�

√�
(| 000 | 101 )〉+ 〉 . 

 

All Wigner function representations of three-qubit pure system 

(apart from the separable states) display some negative values, particularly 

the embedded Bell states. This is in contrast with the two-qubit case where 

the parent Bell state may have a Wigner function representation that 

displays all positive values. 

 

Gibbons et al. (2004) suggests a tensor-product construction for 

phase-space point operators of N = 4. We have examined such tensor-

product operators correspond to different quantum nets for N = 8, but we 

suspect such construction it is not valid for three-qubit case. In our Maple 
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program we obtain tensor product 
1 1 2 2 3 3( , ) ( , ) ( , )x y x y x yA A A⊗ ⊗  of three 

phase-space point operators from the set: 

{
1 1 1 1

1 0 1 0
2 2 2 2

1 1 1 1
0 1 0 1

2 2 2 2

, , ,( ) ( ) ( ) ( )
i i i i

i i i i

− + − + − −

+ − − − − + and their complex conjugation} 

 

But the results do not match with phase-space point operators of our 

different quantum nets. 

 

5. CONCLUSION  

By finding appropriate Galois field for three qubits and 

constructing related discrete phase space, we have enumerated all striations 

for the discrete phase space for three qubits. Applying translations on three-

qubit field bases, we are able to construct the nine mutually unbiased bases 

given in Table 3. The results are equivalent with that of Tselniker et al. 

(2009) who use Hadamard matrices. The benefit of this method is that it is 

completely based on phase space. 

 

Assigning appropriate state vector of bases to every line of our 

phase space, we can calculate Wigner functions for three-qubit system. 

Here, we have shown the ambiguity of the Wigner function representations 

by the quantum states arrives from the assignment of such quantum net. We 

also have suggested that the tensor-product quantum net property which is 

posed in Gibbons et al. (2004) may not be valid for the N-qubit case. 
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