UNIVERSITI PUTRA MALAYSIA

MULTIWAVELENGTH BRILLOUIN-RAMAN FIBER LASER ASSISTED BY RAYLEIGH SCATTERING

RAHELEH SONEE SHARGH

FK 2013 1
MULTIWAVELENGTH BRILLOUIN-RAMAN FIBER LASER ASSISTED
BY RAYLEIGH SCATTERING

By

RAHELEH SONEE SHARGH

Thesis Submitted to the School of Graduate Studies, University Putra Malaysia,
in Fulfillment of the Requirements for the Degree of Doctor of Philosophy

March 2013
To My Beloved Husband

and

Son
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Doctor of Philosophy

MULTIWAVELENGTH BRILLOUIN-RAMAN FIBER LASER ASSISTED BY RAYLEIGH SCATTERING

By

RAHELEH SONEE SHARGH

March 2013

Chair: Mohd Adzir bin Mahdi, PhD

Faculty Engineering

Multiwavelength fiber lasers based on hybrid Brillouin–Raman gain configuration supported by Rayleigh scattering effect have attracted significant research interest due to the large numbers of channel generation from a single light source. When narrow bandwidth Brillouin gain combines with broad bandwidth Raman gain, hundreds of channels would be generated. In multiwavelength Brillouin–Raman fiber laser (MBRFL) architectures, dispersion compensated fiber is utilized as the nonlinear gain media. When a single laser launches into a distributed Raman gain area, it grows very fast through stimulated Raman scattering, and when it acquires threshold condition, it is back-scattered through nonlinear Brillouin and Rayleigh effects, inelastically and elastically inside the gain media respectively. After scattered lights experience amplification through stimulated Raman and Brillouin amplification, they saturate and consequently back-scatter once more. This phenomenon is dubbed as self-feedback-
seeding-effect which is the main principle of MBRFL generation. Normally, the other nonlinear effects such as four waves mixing is assisted by distributed Raman amplifier which generates self-lasing cavity modes that lead to the formation of turbulent waves. The interaction between laser cavity lines and the turbulent waves causes spectral broadening of laser lines that has a direct impact on the quality of Brillouin Stokes lines in terms of Stokes-optical signal to noise ratio (S-OSNR). In this work, it is proven that utilizing large effective area fiber (LEAF) in MBRFL enhances the S-OSNR of Brillouin Stokes lines effectively. Consequently, LEAF is used in the aim of suppressing the noise. In all the experiments which have done in this work, Brillouin pump power is fixed on higher level (8 dBm) due to producing the higher stimulated Brillouin scattering. However Raman pump power and Raman pump direction are two critical features which are studied in this thesis, since they play significant role in the MBRFL characteristics performances. Generation of flat amplitude MBRFL comprises higher number of channels with acceptable S-OSNR utilizing a single frequency Raman pump is the main objective of this research. Investigation and improvement of the characteristics of MBRFL utilizing LEAF is another aim of this work. In this work the optical characteristic performances of generated MBRFL output spectrum at three different configuration; conventional-MBRFL (CON-MBRFL), double-pass MBRFL (DP-MBRFL) and new forward-backward scattering combination-MBRFL (FBSC-MBRFL) are investigated at different Raman pump powers and directions. It is obtained that the forward pumping scheme of CON-MBRFL configuration capable to produce flat amplitude MBRFL with 20 GHz channels spacing. Maximum 322 channels with
acceptable average S-OSNR about 16 dB has been created with this structure, when 1525 nm Brillouin pump wavelength is launched into the linear cavity. In addition, 258 channels with 26 dB SOSNR, excellent uniformity, identical Stokes peak power and linewidth are generated via utilizing backward-Raman pumping scheme of DP-MBRFL configuration. Moreover, it is found that the new configuration FBSC-MBRFL is capable to enhance the Stokes lines count to 700 channels while a single forward-Raman pumping scheme is applied with 1 W power.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

GENTIAN LASER BRILLOUIN-RAMAN PELBAGAI JARAK GELOMBANG DIBANTU OLEH RAYLEIGH

Oleh

RAHELEH SONEE SHARGH

March 2013

Pengerusi: Mohd Adzir bin Mahdi, PhD

Fakulti Kejuruteraan

Laser gentian pelbagai jarak gelombang berdasarkan konfigurasi gandaan hibrid Brillouin-Raman yang disokong oleh serakan Rayleigh telah menarik perhatian signifikan disebabkan oleh penjanaan bilangan besar saluran dari satu sumber laser. Apabila gandaan lebar jalur Brillouin yang sempit bergabung dengan gandaan lebar jalur Raman yang luas, ratusan saluran dapat dijanakan. Dalam laser gentian pelbagai jarak gelombang Brillouin-Raman (MBRFL), gentian pampasan penyebaran digunakan sebagai media bukan linear. Apabila satu laser dilancarkan ke kawasan gandaan Raman, ia akan membesar melalui proses rangsangan penyelerakan Raman, dan mencapai keadaan ambang Brillouin di mana ia akan diselerakkan ke arah bertentangan melalui kesan bukan linear Brillouin dan Rayleigh, secara tidak elastik dan elastik masing-masing. Pancaran tersebut akan diselerakkan lagi sekiranya tahap ketepuan dicapai melalui gandaan Raman dan Brillouin. Fenomena ini dikenali sebagai self-feedback-
seeding-effect yang menjadi prinsip asas penjanaan MBRFL. Biasanya, percampuran empat gelombang (FWM) dibantu oleh gandaan edaran Raman yang menjanakan self-lasing cavity mode dan ini akan menyebabkan gelombang bergelora terbentuk. Interaksi antara self-lasing cavity mode dan gelombang bergelora menyebabkan pelebaran jalur laser dan menjejaskan kualiti Brillouin Stokes dari segi nisbah isyarat-hingar (S-OSNR).

rongga linear. Di samping itu, 258 saluran dengan 26 dB S-OSNR, keseragaman cemerlang, kuasa puncak dan jalur lebar Stokes yang serupa telah dicapai dengan skim pam bertentangan arah DP-MBRFL. Kajian ini juga menemui konfigurasi FBSC-MBRFL berjaya menambah bilangan garis Stokes sehingga 700 saluran dengan hanya kuasa 1 W digunakan dari pam berfrekuensi tunggal Raman dalam arah mara.
AKNOWLEDGEMENTS

First and foremost, I wish to acknowledge the Creator of the entire world, who all the knowledge is with Him. The infinite thanks to him that from his mercy and kindness forgave me the knowledge.

I would like to express my appreciation for the mentoring and support of my advisor Prof. Dr. Mohd Adzir Mahdi.

I want to thank Dr. M. H. Al-mansoori, Dr. Muhammad Hafiz, Yeo Kwok Shien and Nelidya for the support and cooperation I received.

Not forgotten all my colleagues in Photonics and Fiber Optics Systems Laboratory, UPM, for their trust and encouragement that lead to the continuation and completion of this study.

I owe a special thank to my husband’s parents and my own parents. Since I study in a place thousands miles away and I have little opportunities staying with them. They have offered me infinite love, support, and understanding.

Last but not least, I would like to deliver my special thanks to my husband Dr. Amir Saleh, and my son Arad, for their tremendous patience, effort, understanding and encouragement during my research and critical times. This section is too short to acknowledge their perpetual love and sustained support during past three years. I dedicate this work to my husband and my son with whom all of my plans are made and all of my dreams are fulfilled.
I certify that a Thesis Examination Committee has met on 08 March 2013 to conduct the final examination of Raheleh Sonee Sharh on her thesis entitled “Multiwavelength Brillouin-Raman Fiber Laser Assisted by Rayleigh Scattering” in accordance with the Universities and University College Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Abdul Rahman Ramli, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Salasiah Hitam, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
/Internal Examiner

Hairul Azhar Abdul Rashid, PhD
Professor
Faculty of Engineering
Universiti Putra Malaysia
/Internal Examiner

M. Saif Islam, PhD
Professor
Electrical and Computer Engineering Department
University of California
(External Examiner)

Signed

SEOW HENG FONG, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 30 April 2013
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Mohd Adzir Mahdi, PhD
Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Ratna Kalos Zakiah Sahbudin, PhD
Senior Lecturer
Faculty of Engineering
Universiti Putra Malaysia
(Member)

Siti Barirah Ahmad Anas, PhD
Senior Lecturer
Faculty of Engineering
Universiti Putra Malaysia
(Member)

Mohammed Hayder Al-Mansoori, PhD
Associate Professor
Faculty of Engineering
Sohar University
(External Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

RAHELEH SONEE SHARGH

Date: 8 March 2013
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>ABSTRACT</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRAK</td>
<td>iv</td>
</tr>
<tr>
<td>AKNOWLEDGMENT</td>
<td>vii</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>viii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxii</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION
1.1 Introduction and Scope of Research 1
1.2 Problem Statements 3
1.2.1 Spectral Broadening 5
1.2.2 ASE Noise 5
1.2.3 Optimum RPP 6
1.3 Objectives of This Research Work 6
1.4 Scope of Research Works 7
1.5 Research Methodology 8
1.6 Thesis Overview 11

2 LITERATURE REVIEW
2.1 Introduction 13
2.2 Light Interaction in Optical Fiber 15
2.3 Nonlinear Effects in Optical Fibers 16
2.3.1 Stimulated Brillouin Scattering 17
2.3.2 Stimulated Raman Scattering 18
2.3.3 Four Wave Mixing 18
2.3.4 Stimulated Rayleigh Scattering 19
2.4 Overview on Generation of Multiple Lasing Wavelengths 20
2.4.1 Multiwavelength Brillouin Fiber Lasers 21
2.4.2 Multiwavelength Brillouin-Erbium Fiber Lasers 22
2.4.3 Multiwavelength Brillouin-Raman Fiber Laser 23
2.5 Principle of MBRFL Generation Supported by Rayleigh Scattering 23
2.6 Cavity Design 24
2.7 Review on Previous Work on MBRFL Generation 25
2.8 Theory of MBRFL Generation Assisted by Rayleigh Scattering 30
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.8.1</td>
<td>Nonlinear Effects in Optical Fibers</td>
<td>30</td>
</tr>
<tr>
<td>2.8.2</td>
<td>Third-Order Nonlinear Optical Process</td>
<td>31</td>
</tr>
<tr>
<td>2.8.3</td>
<td>Spontaneous Light Scattering</td>
<td>33</td>
</tr>
<tr>
<td>2.8.3.1</td>
<td>Theory of the Spontaneous Light Scattering</td>
<td>35</td>
</tr>
<tr>
<td>2.8.3.2</td>
<td>Spectrum of Spontaneous light Scattering Analyze</td>
<td>37</td>
</tr>
<tr>
<td>2.8.4</td>
<td>Stimulated Brillouin Scattering</td>
<td>44</td>
</tr>
<tr>
<td>2.8.4.1</td>
<td>Principle theory of SBS induced by electrostriction</td>
<td>46</td>
</tr>
<tr>
<td>2.8.4.2</td>
<td>Cooperative Stimulated Brillouin and Rayleigh scatterings</td>
<td>48</td>
</tr>
<tr>
<td>2.8.4.3</td>
<td>Brillouin and Rayleigh components linewidth analysis</td>
<td>49</td>
</tr>
<tr>
<td>2.8.4.4</td>
<td>Brillouin and Rayleigh Gain factor</td>
<td>51</td>
</tr>
<tr>
<td>2.9</td>
<td>Stimulated Raman Scattering</td>
<td>56</td>
</tr>
<tr>
<td>2.10</td>
<td>Summary</td>
<td>59</td>
</tr>
</tbody>
</table>

3 GENERATION OF A CONVENTIONAL MULTIWAVELENGTH BRILLOUIN-RAMAN FIBER LASER AND PERFORMANCES

3.1 Introduction | 60
3.2 Brillouin and Raman Gain Performance of Stokes in Raman Pumped Dispersion Compensated Fiber | 62
3.2.1 Forward Pumping | 64
3.2.2 Backward Pumping | 69
3.3 Experimental Set-up | 71
3.4 Principle Theory of CON- MBRFL Generation | 72
3.5 Results and Discussions | 73
3.5.1 ASE Spectrum at Different RPD on CON-MBRFL Scheme | 73
3.5.2 Effect of RPD and RPP on Transmitted Brillouin Pump | 74
3.5.3 Effects of RPD on CON-MBRFL Spectrum | 76
3.5.4 Effect of RPD and RPP on CON-MBRFL Bandwidth | 80
3.5.5 Effect of RPD and RPP on CON-MBRFL Spectrum OSNR | 88
3.6 Summary | 94

4 DOUBLE-PASS MULTIWAVELENGTH BRILLOUIN-RAMAN FIBER LASER GENERATION AND PERFORMANCES

4.1 Introduction | 97
4.2 Experimental Set-up | 98
4.3 Principle Theory of DP-MBRFL Generation | 100
4.3.1 Backward-Pumping | 100
4.3.2 Forward-Pumping | 106
4.4 Results and Discussions | 109
4.4.1 ASE Spectra at Different RPD and RPP | 109
4.4.2 Effect of RPD and RPP on Backward Propagating Signals | 110
4.4.3 Effect of RPD and RPP on DP-MBRFL Spectrum | 113
4.4.3.1 Backward Pumping | 113
4.4.3.2 Forward Pumping 115
4.4.4 Effect of RPP and RPD on DP-MBRFL Bandwidth 116
4.4.5 Effect of RPP and RPD on DP-MBRFL Spectrum S-OSNR 125
4.5 Effect of LEAF Length and Position on BWP-DP-MBRFL Performances 130
4.5.1 Effect of LEAF Length on Improvement of BWP-DP-MBRFL Characteristics 132
4.5.2 Study on optical characteristics of LE-DC structure 137

5 FORWARD-BACKWARD SCATTERING COMBINATION MULTIWAVELENGTH BRILLOUIN-RAMAN FIBER LASER GENERATION AND PERFORMANCES
5.1 Introduction 142
5.2 Experimental setup 142
5.3 Principle Theory of FBSC-MBRFL Generation 144
5.3.1 Backward pumping 145
5.3.2 Forward pumping 146
5.4 Results and Discussions 147
5.4.1 Effect of LEAF Length on BP Profile 147
5.4.2 Effect of LEAF Length on Bandwidth of Generated FBSC-MBRFL 149
5.4.3 Effect of LEAF Length on S-OSNR of Generated FBSC-MBRFL 151
5.5 Summary 164

6 CONCLUSION AND FURTHER WORKS
6.1 Introduction 167
6.2 Conclusion 167
6.3 Further Works and Suggestion 171

REFERENCES 172
BIODATA OF STUDENT 184
PUBLICATIONS 185