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ABSTRACT 

The interval single-step procedure IS1 established by Alefeld and Herzberger (1983) 
has been modified. The idea of Aitken (1950) and Alefeld (1977) is used to establish 
the interval symmetric single-step procedure ISS1.This procedure has a faster 

convergence rate than does IS1. In this paper, the convergence analysis of the 
procedure ISS1 using interval arithmetic (Moore (1962, 1979), Alefeld and 
Herzberger (1983)) is shown. The procedure ISS1 is considered as the interval version 
of the point symmetric single-step procedure PSS1 Monsi (2010). 
 
Keywords: Interval analysis, interval procedure, simultaneous inclusion, simple 
zeros, R-order of convergence, R-factor of a sequence. 

 

INTRODUCTION 

Several interval iterative procedures for the simultaneous inclusion 

of simple polynomial zeros exist. See, for examples, Gargantini (1975, 1976, 
1978, 1981), Garganti and Henrici (1972), Glatz (1975), Henrici (1974),  

Krier and Spellucci (1975), Milovanovic and Petkovic (1983), Petkovic 

(1980, 1982), Petkovic and Milovanovic (1983), Petkovic and Stefanovic 

(1986, 1987). Interval iterative procedures for simultaneous inclusion of 
simple polynomial zeros determine bounded closed intervals each of which 

contains an exact polynomial zero. Furthermore the widths of intervals are 

limited only by the precision of the machine floating point arithmetic. Thus 
interval iterative procedures can be used to determine very narrow 

computationally rigorous bounds on polynomial zeros. 

 
       The purpose of this paper is to describe the interval symmetric 

single-step procedure ISS1 for simultaneously bounding simple polynomial 

zeros. The procedure ISS1 is the interval version of the point symmetric 

single-step procedure PSS1 Monsi (2010). The significance of using interval 
analysis (Moore (1962, 1979), Alfeled and Herzbeger (1983)) for 
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determining the convergence rate of the procedure ISS1 is that its 

convergence analysis is very straight forward.  

 
The R-order of convergence analysis of an iterative procedure is 

used in this paper as a measure of the asymptotic convergence rate of the 

procedure. The concept of R-order of convergence is discussed in detail in 
Ortega and Rheinboldt (1981) and Alefeld and Herzberger (1983). The R-

order of the procedure I which converges to x
∗

 is denoted by ( , )RO I x
∗   and 

the R-factor of a null sequence ( )k
w   generated from the procedure I is 

denoted by ( )
( ),

k

pR w where 1p ≥   and 
( )k

w  is a null sequence generated 

from the procedure I. 

 

Furthermore, if there exists a 1p ≥  such that for any null sequence 

( )
{ }

k
w generated from 

( )
{ },

k
x  then the R-factor of such sequence is defined 

to be  
 

1
( )

( )

1
( )

lim sup , 1

( )

lim sup , 1,
k

k k

k

k

p

k p

k

w p

R w

w p

→∞

→∞


=


= 

 =


 

 

where pR    is independent of the norm .⋅   

 
We may now define the R-order of the iteration I as 

 

}{

( , ) 0 for 1

( , )
inf [1, ), ( , ) 1 otherwise.

p

R

p

if R I x p

O I x
p p R I x

∗

∗

∗

+∞ = ≥


= 
∈ ∞ =

 

 

Suppose that 
( )

( ) 1
k

pR w <   then it follows from Ortega and Rheinboldt 

(1970) that the R-order of  I  satisfies the inequality ( , ) .RO I x p
∗ ≥  We will 

use this result in order to calculate the R-order of convergence of  ISS1 in the 

subsequent section. 
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The proof of the following theorem is in Ortega and Rheinboldt (1970). 

 

Theorem 1 

Let � be an iteration procedure with the limit x
∗

, and let ( , )I x
∗Ω   be the set 

of all sequences 
( )

{ }
k

x  generated by I  having the properties that 

( )
lim

k

k x x
∗

→∞ = and ( )
, 0.

k
x x k

∗ ⊆ ≥   If there exists a 1p ≥   and a constant 

γ  such that for all { }( ) ( , )kx I x∗∈Ω  and for a norm ,⋅  it holds that 

( 1) ( 1) ( ), ({ }),
p

k k kh h k k xγ+ +≥ ≥  then it follows that the R-order of I 

satisfies the inequality ( , ) .RO I x p
∗ ≥ □   

 

 

THE INTERVAL TOTAL-STEP AND SINGLE-STEP 

PROCEDURES 

        Let 
1 1

:p R R→  be a polynomial of degree n  defined by           

 

0

( ) :
n

i

i

i

p x a x
=

∑                                                 (1) 

where 
1
( 0,..., )ia R i n∈ =   are given. Suppose that p  has  n   distinct zeros 

1 ( 1,..., ),x R i n
∗ ∈ =  and that 

(0)
( )( 1,..., )ix I R i n∈ =   are such that   

 
(0)

( 1,..., ),i ix x i n∗ ∈ =                                         (2) 

 
and 

 
(0) (0)

0 ( , 1,..., ; ).i jx x i j n i j∩ = = ≠                              (3) 

 

 

It is assumed henceforth that 1,na =  so that 

( )
1

( ) .
n

j

j

p x x x
∗

=

= −∏                                           (4) 
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By (4), for ( )( )1,..., 1,...,ji n x x j n∗= ∀ ≠ =   

 

( )
( )

.j

j i j

p x
x x

x x

∗

∗
≠

= −
Π −

                                         (5) 

 

If 

( )(0)(0) ( 1,..., ),i ix m x i n= =                                      (6) 

 

are the midpoints of the interval 
(0)

( 1,..., )ix i n=    respectively. Then by (2), 

(3) 

 
(0) ( , 1,..., ; ).i jx x i j n j i

∗≠ = ≠                                 (7) 

 

So by (5), 

 

( )

(0)
(0)

(0)

( )
( 1,..., ).i

j i

j i i j

p x
x x i n

x x

∗

∗
≠

= − =
Π −

                         (8) 

 

Furthermore, by (3), (6), 
(0)(0)

( , 1,..., ; )i jx x i j n j i∉ = ≠  whence 

 
 

( )(0)(0)
0 ( 1,..., ).i j

j i

x x i n
≠

∉ − =∏                               (10) 

 

So by (2), (8), and the inclusion monotonicity (Alfeld and Herzberger 

(1983)) of real interval arithmetic, 

 

( )
( )

(0)

(1) (0)(0)

(0)(0)
( 1,..., ).

i

i ii i

j i i j

p x
x x x x i n

x x

∗

≠

 
 

∈ = − ∩ = 
Π −  

            (11) 
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This gives rise to the total-step procedure IT1 of Alefeld and Herzberger 

(1983) defined by 

( )( )( ) ( 1,..., ),
kk

i ix m x i n= =                                 (12a) 

( )
( )

( )

( 1) ( )( )

( )( )
( 1,..., )( 0),

k
ik kk

ii ikk
j i i j

p x
x x x i n k

x x

+

≠

 
 

= − ∩ = ≥ 
Π −  

         (12b) 

 
 

which may be regarded as an interval version of the procedure PT1 in Monsi 

(2010). The following theorems are proved in Alefeld and Herzberger 
(1983). 

 

Theorem 2 

If (i) (2) and (3) hold; (ii) the sequences { }( )( )
1,...,

k

jx i n=  are generated 

from (12), then ( ) ( )( 1) ( )
0 1,..., .

k k

i i ik x x x i n
+∗∀ ≥ ∈ ⊆ =  If also (iii) 0 id∉  

where [ ], ( )iI iSid d d I R= ∈  is such that ( )( )(0)
( ) 1,..., ,i ip x d x x i n′ ∈ ∀ ∈ =   

then ( )( )( )
1,...,

k

iix x k i n∗→ → ∞ =  and ( )( )0 1,...,k i n∀ ≥ =       

 

( ) ( )( 1) ( )1
1 ,

2

k kiI
i i

iS

d
w x w x

d

+  
≤ − 

 
                               (13) 

 

where ( ) ( )( ) ( ) ( ) ( ) ( ), .
k k k k k

iI iS iS iIiw x w x x x x = = −   Furthermore, for 1,..., ,i n=  

( )1, 2.R iO IT x∗ ≥ □  

 

The interval single-step procedure IS1 of Alefeld and Herzberger (1983) is 
the interval version of the point single-step procedure PS1 which is 

discussed in Monsi (2010), and consists of generating the sequences 

{ }( )( )
1,...,

k

ix i n=  from 

 

( )( )( )( ) 1,...,
kk

i ix m x i n= =                                 (14a) 
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( )
( ) ( )

( )

( 1) ( )( )

( 1) ( )1 ( ) ( )
1 1

k
ik kk

ii ik ki k n k
j i j i ij j

p x
x x x

x x x x

+

+−
= = +

 
 

= − ∩ 
Π − Π −  

        (14b) 

 

( )( )1,..., 0 .i n k= ≥  

Theorem 3 

If (i) (2) and (3) hold; (ii) the sequences { }( )1,...,
k

ix i n=  are generated from 

(14), then ( ) ( 1) ( )
0 ( 1,..., ).

k k

i i ik x x x i n
+∗∀ ≥ ∈ ⊆ =  If also (iii) 0 id∉  where 

( )id I R∈  is such that ( )( )(0)( ) 1,..., ,iip x d x x i n′ ∈ ∀ ∈ =  then 

( )( )( ) 1,...,k
i ix x k i n∗→ → ∞ =  and (13) holds. Furthermore, for 

( )1,..., , 1, 1R ii n O IS x σ∗= ≥ +  where (1,2)σ ∈  is the greatest positive zero 

of 1.n
t t− − □   

 
 

THE INTERVAL SYMMETRIC SINGLE-STEP ISS1 

A natural extension of the interval single-step procedure IS1 is the 
interval symmetric single-step procedure ISS1 which is based on the 

symmetric single-step idea Aitken (1950) and Alefeld (1977), and may be 

regarded as an interval version of the point procedure PSS1 in Monsi (2010). 

The procedure ISS1 consists of generating the sequences { }( )( )
1,...,

k

ix i n=  

from 

 

( )( ,0) ( )
1,..., ,

k k

i ix x i n= =                                  (15a) 

 

( ) ( )( )( ,0)
1,..., ,

kk

i ix m x i n= =                            (15b) 

 

( ) ( )( ) ( ) 1,..., ,k k
i ip p x i n= =                              (15c) 
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( ) ( )

( )
( ) ( ) ( ,0)

( ,1) ( ,0)1 ( ) ( )
1 1

,
k

k k ki
i ii k ki k n k

j i j i ij j

p
x x x

x x x x−
= = +

 
 

= − ∩ 
Π − Π −  

        (15d) 

 

( )1,..., ,i n=  

 

( ) ( )

( )
( ,2) ( ,1)( )

( ,1) ( ,2)1 ( ) ( )
1 1

,
k

k kk i
ii ik ki k n k

j i j i ij j

p
x x x

x x x x−
= = +

 
 

= − ∩ 
Π − Π −  

       (15e) 

                     

( )1,..., ,i n=  

 

( )( )( 1) ( ,2)
1,..., 0 ,

k k

i ix x i n k
+ = = ≥                                  (15f) 

 

 

The procedure ISS1 has the following attractive features:  
 

• The values ( )( )( ) 1,...,k
ip x i n=  which are computed for use in (15d) are  

re-used in  (15e). 

• The products ( )( )( ,1)1 ( )

1 2,...,
ki k

j i jx x i n
−
=Π − =  which are computed    

for use in (15d) are re-used in (15e). 

• ( )( ,1) ( ,2)
0

k k

n nx x k= ≥  so that ( ,2)k

nx  need not be computed. 

• The R-order of convergence of the interval total-step IT1 procedure 

defined  by  (12)  is at least 2 or ( )1 2.RO IT ≥  

 
The interval single-step IS1 procedure (steps (14a)-(14b)) has been 

studied by Alefeld and Herzberger (1983). The �-order of convergence 

( )1,RO IS x∗ for IS1 to the set of simple zeros ( )1 2, ,...,
T

nx x x x∗ ∗ ∗ ∗= is such that 

( )1, 1 2,RO IS x τ∗ ≥ + >  where ( )1,2τ ∈  is the unique positive zero of  

1.n
t t− − As shown subsequently in this paper that the corresponding �-

order of convergence of  ISS1 defined by (15) is at least 3 or 

( )1, 3.RO ISS x∗ ≥  
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Theorem 4 

If (i) (2) and (3) hold; (ii) the sequences { }( )( )
1,...,

k

ix i n=  are generated 

from (15), then  ( ) ( )( 1) ( )
0 1,..., .

k k

i i ik x x x i n
+∗∀ ≥ ∈ ⊆ = =   

 

If also (iii) 0 ( )id I R∉ ∈  is such that ( ) ( )(0)
( ) 1,..., ,i ip x d x x i n′ ∈ ∀ ∈ = =   

then ( )( )( )
1,...,

k

iix x k i n∗→ → ∞ =  and (13) holds. Then for 

( ) ( )1,..., , 1 , 3.R ii n O ISS x∗= ≥   

 

Proof 

The proof that ( )( )( 1) ( )
1,..., 0

k k

i i ix x x i n k
+∗ ∈ ⊆ = ∀ ≥  and that (13) holds is 

almost identical with the corresponding proofs in Theorem 1 and Theorem 2, 

and is therefore omitted. It remains to prove that for 

( ) ( )1,..., , 1 , 3.R ii n O ISS x∗= ≥  

 
As in the proof of Theorem 2 (Alefeld and Herzberger (1983)) it may be 

shown that 0α∃ >  such that ( )0 ,k∀ ≥   

 

( )
1

( ,1) ( ,0) ( ,1) ( ,0)

1 1

1,..., ,
i n

k k k k
i i j j

j j i

w w w w i nβ
−

= = +

  
≤ + = 

  
∑ ∑              (16) 

 

and 

 

( )
1

( ,2) ( ,0) ( ,1) ( ,2)

1 1

1,..., ,
i n

k k k k
i i j j

j j i

w w w w i nβ
−

= = +

  
≤ + = 

  
∑ ∑              (17) 

 

where 
 

( )( , )( , ) ( 1) ( 0,1,2),
k sk s

i iw n w x sα= − =
                       

(18)
 

and 

 

1
.

1n
β =

−                                                  
(19) 
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Let 

 

( )
( )

(1,1)
2 1,..., 1

,
3

i

i n
u

i n

 = −
= 

=                                      (20) 

 

and 

     

( )
( )

(1,2)
4

,
3 2,...,

i

i n
u

i n

 =
= 

=                                      (21) 

 

and for 1,2r =  let 

 

 

( )

( )

( , )

( 1, )

( , )

3 1 1
.

3 2,...,

k r
ik r

i k r

i

u i
u

u i n

+
 + =

= 
=

                              (22)                  

 

Then by (20) – (22),  for ( )0 ,k∀ ≥   

 

( ) ( )

( ) ( )

( ) ( )

1

( ,1) 1

1

5 1
3 1

2 2

2 3 2,..., 1 ,

3 3

k

k k
i

k

i

u i n

i n

−

−

−


− =




= = −



=


                          
(23) 

and 
 

 

( ) ( )

( ) ( )

1

( ,2)

1

9 1
3 1

2 2 .

3 3 2,...,

k

k

i

k

i

u

i n

−

−


− =

= 


=

                             (24) 
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Suppose, without loss of generality, that 

 

( )(0,0) 1 1,..., .iw h i n≤ < =                                    (25) 

 

Then by an inductive argument it follows from (16) – (25) that for 

( )( )1,..., 0 ,i n k= ≥   

 
( 1,1)

( ,1) ,
k

iuk

iw h
+

≤  

and 

 
( 1,2 )

( ,2) ,
k

iuk

iw h
+

≤  

 

 

whence, by (24) and (15f), ( )0k∀ ≥   

 

( )
( 1)( 1) 3 1,...,
k

k

iw h i n
++ ≤ =  

 

So ( )0 ,k∀ ≥  by (17) – (25), 

 

( ) ( )( ) 3
1,..., .

kk

iw x h i n
β

α

 
≤ = 
 

                              (26) 

 
Let 

 

( ){ }( )( )

1
max .

kk

i
i n

w w x
≤ ≤

=  

 

Then by (26), 
 

( )( ) 3
0 .

k
k

w h k
β

α

 
≤ ∀ ≥ 
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So 

( ) ( )
1 (3 )

( ) ( )
3

1 (3 )

lim sup

lim

1.

k

k

k k

k

h

k

R w w

h

β

α

→∞

→∞

 
=  

 

   
=   

   

=

<

 

 

Therefore , it follows from Alefeld and Herzberger (1983), Orthega and 

Rheindfold (1970) that 

 

( ) ( )1, 3 1,..., .R iO ISS x i n∗ ≥ = □  

 

 

NUMERICAL RESULTS 

The following examples are used to compare the efficiencies of the 

procedures IT1, IS1 and ISS1. 

 

Example 1: 

The characteristic polynomial  

 

( ) det( ),p I Aλ λ= −                                        (27a) 

 

where 

 
 

1 1

1 2

1 1

1

0

0
n n

n n

a b

b a

A

a b

b a

− −

−

 
 
 
 =
 
 
 
 

⋱

⋱ ⋱ ⋱

⋱
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and 

 

( )

( )

(0)

(1)

1

( ) ( 1) 2 ( 2)
1

( ) 1

( ) ,

( ) ( ) ( ) ( )(2 ),k k k
k k

f

f a

f a f b f k n

λ

λ λ

λ λ λ λ− −
−

=

= −

= − − ≤ ≤

         (27b) 

 
( )( ) ( ).n

p fλ λ=  

 

For this example (Alefeld and Herzberger (1983)): 

 

( )

1 2 3 4

5 6 7 8 9

9,

1 1,..., 1 ,

15; 10; 7; 4,

0; 4; 7; 10; 15.

i

n

b i n

a a a a

a a a a a

=

= = −

= = = =

= = − = − = − = −

 

 

Initial intervals: 

 

[ ] [ ] [ ]

[ ] [ ] [ ]

[ ] [ ] [ ]

(0) (0) (0)

1 2 3

(0) (0) (0)

4 5 6

(0) (0) (0)

7 8 9

14,16 , 8,12 , 5,9 ,

2,6 , 2,2 , 6, 2 ,

9, 5 , 12, 8 , 17, 12 .

x x x

x x x

x x x

= = =

= = − = − −

= − − = − − = − −

 

 

Example 2 (Alefeld and Herzberger (1983))  

The polynomial is given by (27) with 

 

1 2 3 4 5

5,

12, 9, 6, 3, 0,

1 ( 1,...,4).i

n

a a a a a

b i

=

= = = = =

= =

 

 

Initial intervals: 

 

[ ] [ ] [ ]

[ ] [ ]

(0) (0) (0)

1 2 3

(0) (0)

4 5

11,13 , 7,11 , 4,8 ,

1,5 , 1,1 .

x x x

x x

= = =

= = −
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Example 3  

The polynomial is given by (27) with 

 

1

9,

10 ( 1,...,9),

20 ( 1,...,8),i

n

a i

b i

=

= =

= =

 

 

The zeros: ( )10 40 cos 1,..., .
1

i

i
x i n

n

π∗  
= + = 

+ 
    

Initial intervals: ( )(0)
2.8, 5.6 1,..., .i iix x x i n

∗ ∗ = − + =     

 

Example 4  

The polynomial is as in Example 3 save that in this example, 

 

1 10 ( 1,..., ).a i n= − =  

 

Example 5 

The polynomial is as equation (4). 
          

The zeros:    

1

2 1 ( 1,..., ),
2 2

( 1,..., ).
2

20 ( 1,...,8),

i

n i

i

n n
i i

x
n

x i n

b i

∗

∗
− +

  
− − + =    = 


− = +

= =

 

                  

  Initial intervals: 
(0)

0.5, 1.0 ( 1,..., ).i iix x x i n
∗ ∗ = − + =     
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TABLE 1: CPU times in seconds. 
 

Example n IT1 IS1 ISS1 

1 9 3.67 3.06 2.92 

2 5 1.23 1.15 1.14 

3 9 4.28 3.80 3.65 

4 9 4.41 3.71 3.71 

5 14 9.76 8.09 6.27 

 
TABLE 2: Number of iterations. 

 

Example n IT1 IS1 ISS1 

1 9 5 4 3 

2 5 4 4 3 

3 9 6 5 4 

4 9 6 5 4 

5 14 6 5 3 

 

 

CONCLUSION 

We have shown analytically that the interval symmetric single-step 

procedure ISS1gives better results in terms of the rate of convergence, where 

the R-order of convergence of ISS1 is at least 3 or ( )1, 3.RO ISS x∗ ≥   

 
On the other hand, the R-order of convergence of  IS1 of Alefeld and 

Herzberger (1983) is greater than 2, that is ( )1, 2,RO IS x∗ >  and also that the 

R-order of convergence of IT1 of Kerner (1966) is at least 2 or 

( )1, 2.RO IT x∗ ≥   

 

It is clear from Table 1 and Table 2 that the procedure ISS1 

numerically requires less CPU times and number of iterations then does IT1 

and IS1. These procedures have been implemented in Triplex S-algol     
(Cole and Morrison (1982)) on a VAX 11-785 computer. The stopping 

criterion used is ( ) 1010 .k
w

−≤    

 



The Interval Symmetric Single-Step ISS1 Procedure for Simultaneously Bounding 

 Simple Polynomial Zeros 

 

                                           Malaysian Journal of Mathematical Sciences 225 

 

REFERENCES 

Aberth, O. 1973. Iteration methods for finding all zeros of a polynomial 
simultaneously. Maths. of Comput. 27: 339-344. 

 

Aitken, A.C. 1950. Studies in practical mathematics V. On the iterative 

solution of linear equation. Proc. Roy. Soc. Edinburg Sec. A. 63:   
52-60. 

 

Alefeld, G. 1977. The symmetric single-step method for systems of 
simultaneous linear equations with intervals as coefficients.  

Computing. 18: 329-340. 

 

Alefeld, G. and Herzberger, J. 1983. Introduction to Interval Computations, 

New York: Academic Press. 

 

Cole, A.J. and Morrison, R. 1982. Triplex: A system for interval arithmetic. 
Software – Practice and Experience. 12: 341-350. 

 

Gargantini, I. 1975. Parallel square root iterations, Interval Mathematics  
 K. Nickel, (Ed.). Lecture Notes in Computer Sciences 29. 

Heidelberg: Springer Verlag,  

 

Gargantini, I. 1976. Parallel Laguerre iterations: The complex case. Numer. 

Math. 26: 317-323. 

 

Gargantini, I. 1978. Further applications of circular arithmetic: Schroeder-
like algorithms with error bound for finding zeros of polynomials. 

SIAM J. Numer. Anal. 15: 497-510.  

 
Gargantini, I. 1981. An application of interval mathematics: A polynomial  

 solver with degree four convergence, Freiburger Intervallbericht 

81/7. 

 

Garganti, I. and Henrici, P.1972. Circular arithmetic and the determination 

of polynomial zeros. Numer. Math.18: 305-320. 

 
Glatz, G. 1975. Newton algorithms for the determination of polynomial 

roots using  complex circular arithmetic, Interval Mathematic K. 

Nickel,(Ed.). Lecture Notes in Computer Science 29. Heidelberg: 
Springer Verlag.  



Mansor Monsi 

 

226 Malaysian Journal of Mathematical Sciences 

 

Henrici, P. 1974. Applied and Computational Complex Analysis.  New York: 

John Wiley and Sons.  

 
Kerner, O. 1966. Total step procedure for the calculation of the zeros of 

polynomials. Numer. Math. 8: 290-294. 

 
Krier, N. and Spellucci, P. 1975. Inclusion sets of polynomial zeros. Interval 

Mathematics K. Nickel, (Ed.). Lecture Notes in Computer Science 

29. Heidelberg: Springer Verlag. 
 

Milovanovic, G.V. and Petkovic, M.S. 1983. On the convergence of a 

modified method for simultaneous finding of polynomial zeros. 

Computing. 30: 171-178. 
 

Monsi, M. 2010. The Point Symmetric Single-Step PSS1 Procedure for 

Simultaneously Estimating Simple Polynomial Zeros. (Submitted to 
the Malaysian Journal of Mathematical Sciences). 

 

Moore, R.E.1962. Interval Arithmetic and Automatic Error Analysis in 

Digital Computing, PhD Thesis, Stanford University. 
 

Moore, R.E.1979. Methods and Applications of Interval Analysis. 

Philadelphia: SIAM Publications. 
 

Ortega,J.M. and Rheinboldt,W.C. 1970.  Iterative Solution of Nonlinear 

Equations in Several Variables, New York: Academic Press. 
 

Petkovic, M.S. 1980. On the generalization of some algorithms for the 

simultaneous approximation of polynomial roots in interval 

mathematics K. Nickel, (Ed.). New York: Academic Press. 
 

Petcovic, M.S. 1982. On an iterative method for simultaneous inclusion of 

polynomial complex zeros. J. Computational and Appl. Math. 8:  
51-52. 

 

Petkovic, M.S. and Milovanovic,G.V. 1983. A note on some improvements 
of the simultaneous methods for determination of polynomial zeros.              

J. Computational and Applied. Math. 9: 65-69.  

 

Petkovic, M.S. and Stefanovic, L.V. 1986. On a second order method for the 
simultaneous inclusion of polynomial complex zeros. J. Comp. and 

Appl. Math.15: 13-25. 



The Interval Symmetric Single-Step ISS1 Procedure for Simultaneously Bounding 

 Simple Polynomial Zeros 

 

                                           Malaysian Journal of Mathematical Sciences 227 

 

Petkovic, M.S. and Stefanovic, L.V.1986. On some improvements of square 

root iteration for polynomial complex zeros. J. Comp. and Appl. 

Math. 15:13-25. 
 

Petkovic, M.S. and Stefanovic, L.V. 1987. On some iteration functions for 

the simultaneous computation of multiple complex polynomial 
zeros. BIT. 27: 111-122. 

 

 

 


