

UNIVERSITI PUTRA MALAYSIA

RAYLEIGH-BENARD CONVECTION IN MICROPOLAR FLUIDS WITH INTERNAL HEAT GENERATION

IZZATI KHALIDAH BINTI KHALID

RAYLEIGH-BENARD CONVECTION IN MICROPOLAR FLUIDS

WITH INTERNAL HEAT GENERATION

By

IZZATI KHALIDAH BINTI KHALID

To My Beloved Family.

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Master of Science

RAYLEIGH-BENARD CONVECTION IN MICROPOLAR FLUIDS WITH INTERNAL HEAT GENERATION

By

IZZATI KHALIDAH KHALID

July 2013

Chair : Nor Fadzillah Mohd Mokhtar, PhD

Faculty : Faculty of Science

Rayleigh-Bénard convection is the heat transfer process which due to buoyancy forces that occurred in a plane horizontal layer of micropolar fluids heated from below. The effect of feedback control and magnetic field on the onset of Rayleigh-Bénard convection in a horizontal micropolar fluids layer in the presence of heat generation has been studied. The fluid layer with various boundary conditions at the lower and upper boundaries, and perfectly heat conduction are investigated theoretically based on the linear stability analysis. The various boundary conditions are assumed to be rigid-rigid, rigid-free and free-free. The resulting eigenvalue problems are solved analytically using the Galerkin method. The critical Rayleigh numbers are obtained and the influences of various parameters have been analyzed. It is found that the rigid-rigid surface is the most stable system, and the effect of feedback control as well as the magnetic field always stabilized the system is shown.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

OLAKAN RAYLEIGH-BENARD DI DALAM BENDALIR MIKROPOLAR DENGAN PENJANAAN HABA DALAMAN

Oleh

IZZATI KHALIDAH KHALID

Julai 2013

Pengerusi : Nor Fadzillah Mohd Mokhtar, PhD

Fakulti : Fakulti Sains

Olakan Rayleigh-Bénard merupakan suatu proses pemindahan haba yang disebabkan oleh daya keapungan bagi lapisan mengufuk bendalir mikropolar yang dipanaskan dari bawah. Kesan kawalan suap balik dan medan magnet ke atas olakan Rayleigh-Bénard dalam lapisan bendalir mikropolar mengufuk dengan kehadiran penjanaan haba dalaman dikaji. Sistem dengan pelbagai syarat sempadan pada sempadan bawah dan atas, dan konduksi haba yang sempurna telah dikaji secara teori berdasarkan teori kestabilan linear. Syarat sempadan yang pelbagai ini diandaikan seperti tegar-bebas, tegar-tegar dan bebas-bebas. Masalah nilai eigen yang diperoleh diselesaikan secara analitik menggunakan kaedah Galerkin. Nombor kritikal Rayleigh diperolehi dan kesan ke atas beberapa kaedah parameter telah dianalisa. Didapati system permukaan tegar-tegar adalah yang paling stabil, manakala kesan kawalan suap balik dan medan magnet sentiasa menstabilkan system juga ditunjukkan.

ACKNOWLEDGEMENTS

Bismillahirrahmanirrahim. In the Name of Allah, the most Beneficent and the most Merciful. Praise be to Allah, Lord of the Worlds. Alhamdulillah, for His blessings showered upon me for making the writing of this thesis a successful one. I would like to express my great appreciation for the guidance and assistance received throughout the journey of this thesis writing.

My deepest thanks to my respected supervisor and co-supervisor; Dr. Nor Fadzillah Mohd Mokhtar and Assoc. Prof. Dr. Norihan Md. Arifin for their valuable guidance, knowledge, times and support.

Many thanks to the Department of Mathematics, Faculty of Science, Universiti Putra Malaysia (UPM) for providing me with a very good research environment and equipments. My special thanks to the staff from the department who have been very supportive and very helpful during my course of study here. I would also like to express my sincere thanks to Ministry of Higher Education Malaysia and School of Graduate Studies for the financial support throughout the course of my research.

My deepest full of appreciation to my friends and research colleagues who kindly provided valuable and helpful comments in the preparation of this thesis. Finally, thank you very much to my family who had given their maximum support and great motivation without fail, for me to keep on going to reach the peak, especially during the hard times. May Allah bless you all.

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Nor Fadzillah Mohd Mokhtar, PhD

Lecturer Faculty of Science Universiti Putra Malaysia (Chairman)

Norihan Md Arifin, PhD

Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date:

DECLARATION

I declare that the thesis is based on my original work except for quotations and citations, which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or other institutions.

IZZATI KHALIDAH KHALID

Date: 25 July 2013

TABLE OF CONTENTS

			Page	
DEI	DICATIO	ON	ii	
ABSTRACT				
ABSTRAK				
	_	EDGEMENTS	iv v	
	PROVAI		vi	
	CLARAT		viii	
	T OF TA		xi	
LIS	T OF FI	GURES	xii	
LIS	T OF A	BREVIATIONS	xiv	
CH	APTER			
1	INTR	RODUCTION	1	
	1.1	Convection	1	
	1.2	Physical Mechanism of Rayleigh-Bénard Convection	2	
	1.3	Applications of Convection	3	
	1.4	Micropolar Fluids	4	
	1.5	Rayleigh-Bénard Convection Through Micropolar Fluids	5	
	1.6	Objective	6	
	1.8	Problem Formulation	7	
	1.9	Linearized Problem	9	
	1.10	Thesis Outline	14	
2	LITE	RATURE REVIEW	16	
	2.1	Rayleigh Bénard Convection	16	
	2.2	Convection with Internal Heat Generation	19	
	2.3	Convection with Feedback Control	24	
	2.4	Convection with Magnetic Field	28	

3	EFFECT OF INTERNAL HEAT GENERATION ON				
	RAYLEIGH-BENARD CONVECTION IN MICROPOLAR				
	FLU	IDS	37		
	3.1	Introduction	37		
	3.2	Mathematical Formulation and Solution	38		
	3.3	Results and Discussions	41		
	3.4	Conclusions	43		
4	COM	MBINED EFFECT OF INTERNAL HEAT GENERATION			
	AND	FEEDBACK CONTROL ON RAYLEIGH-BENARD			
	CON	IVECTION IN MICROPOLAR FLUIDS	47		
	4.1	Introduction	47		
	4.2	Mathematical Formulation and Solution	48		
	4.3	Results and Discussions	50		
	4.4	Conclusions	54		
5	UNI	FORM SOL <mark>UTION ON RAYLEIGH-BENARD</mark>			
	CONVECTION WITH COMBINED EFFECT OF				
	MA(GNETI <mark>C FIELD AND INTERNAL HE</mark> ATING IN			
	MIC	ROPOLAR FLUIDS	58		
	5.1	Introduction	58		
	5.2	Mathematical Formulation and Solution	59		
	5.3	Results and Discussions	63		
	5.4	Conclusions	67		
6	CONCLUSION AND FURTHER RESEARCH				
	6.1	Summary of Research	71		
	6.2	Further Research	72		
DDE			73		
REFERENCES					
APPENDICES BIODATA OF STUDENT					
LIST OF PUBLICATIONS			115 116		