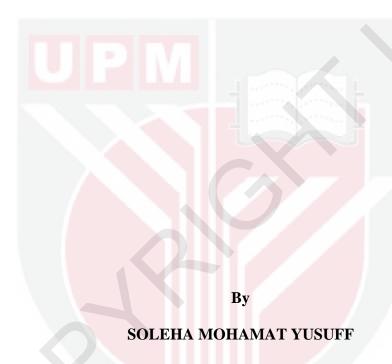


UNIVERSITI PUTRA MALAYSIA

PREPARATION AND APPLICATION OFPOLY(HYDROXAMIC ACID)-KENAF FIBER CHELATING ION EXCHANGER FOR THE REMOVAL OF CHROMIUM AND NICKEL FROM AQUEOUS SOLUTIONS

SOLEHA MOHAMAT YUSUFF


PREPARATION AND APPLICATION OF POLY(HYDROXAMIC ACID)-KENAF FIBER CHELATING ION EXCHANGER FOR THE REMOVAL OF CHROMIUM AND NICKEL FROM AQUEOUS SOLUTIONS

SOLEHA MOHAMAT YUSUFF

MASTER OF SCIENCE UNIVERSITI PUTRA MALAYSIA

PREPARATION AND APPLICATION OF POLY(HYDROXAMIC ACID)-KENAF FIBER CHELATING ION EXCHANGER FOR THE REMOVAL OF CHROMIUM AND NICKEL FROM AQUEOUS SOLUTIONS

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia

Abstract of the thesis presented to the Senate of Universiti Putra Malaysia in

fulfilment of the requirement for the degree of Master of Science

PREPARATION AND APPLICATION OF POLY(HYDROXAMIC ACID)-KENAF FIBER CHELATING ION EXCHANGER FOR THE REMOVAL OF

CHROMIUM AND NICKEL FROM AQUEOUS SOLUTIONS

By

SOLEHA MOHAMAT YUSUFF

May 2013

Chairman : Md. Jelas Haron, PhD

Faculty

: Science

Research on the removal of heavy metal ions from water and wastewater is a

necessary mission of protecting human health and the environment. Adsorption is

the promising technique compared to the others due to its low-cost, easy operating

and effectiveness characteristic. Besides produced the effective adsorbent, many

researchers has great attention to use low-cost and non-petroleum based materials

such as natural fibers. Fibrous plant of kenaf (Hibiscus cannabinus L.) is one of the

commercial crops in Malaysia which is used in various sectors due to its properties.

Therefore the application of kenaf fiber for removal of heavy metals from water and

wastewater is worth explored. The fiber was grafted through polymerization with

methyl acrylate and the ester group was reacted with hydroxylamine hydrochloride

to form poly(hydroxamic acid) which is known able to form complex with metal

ions.

The effects of important parameters during grafting process which can affect

percentage of grafting such as amount of catalyst, co-catalyst and monomer,

temperature and time of grafting were studied followed by the effects of pH and

ii

amount of hydroxylamine hydrochloride during hydroxyaminolysis which can affect the percentage of metal removal. The characteristics of kenaf fiber, grafted kenaf fiber and functionalized kenaf fiber prepared were characterized by colored complex test with vanadium ion, TGA, CHN/O analysis, BET surface analysis, FTIR and SEM-EDX spectroscopy. This research also investigate the effects of pH, reaction time, initial metal concentrations, adsorbent dosage and temperature on the adsorption capacity for Ni (II), Cr (III) and Cr (VI) ions removal.

The optimum amount of catalyst, co-catalyst and monomer for grafting copolymerization of methyl acrylate onto 5.0 g of kenaf fiber were 15 mL, 0.50 g and 30 mL, respectively. The percentage of grafting value was higher with 2 hr of grafting reaction at 45 °C. In preparation of PHA-kenaf, 1.0 g of hydroxylamine hydrochloride in 15 mL of methanolic solution at pH 13 reacted with 1.0 g PMA-kenaf gave the high value of adsorption capacity. FTIR spectra, TGA, BET analysis, CHN/O elemental analysis, colored complex test with vanadium ion, SEM images and EDX spectra showed the characteristics of kenaf, PMA-kenaf and PHA-kenaf. The optimum pH for Ni (II), Cr (III) and Cr (VI) adsorptions were 6, 4 and 3, respectively. The adsorption capacities were dependent on Ni (II), Cr (III) and Cr (VI) ions concentrations, reaction time, and adsorbent dosage. The adsorption process of Ni (II), Cr (III) and Cr (VI) followed pseudo second-order model. The equilibrium data followed the Langmuir model with maximum adsorption capacity of Ni (II), Cr (III) and Cr (VI) were 43.29, 13.42 and 30.12 mg/g, respectively. The adsorption processes were endothermic and spontaneous.

Abstrak tesis yang dikemukakan kepada senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

PENYEDIAAN DAN APLIKASI PENUKAR ION PENGKELAT POLI (ASID HIDROSAMIK)-KENAF FIBER UNTUK PENYINGKIRAN KROMIUM DAN NIKEL DARIPADA LARUTAN AKUES

Oleh

SOLEHA MOHAMAT YUSUFF

Mei 2013

Pengerusi : Md. Jelas Haron, PhD

Fakulti

: Sains

Penyelidikan tentang penyingkiran ion-ion logam berat daripada air dan air buangan

merupakan satu misi penting untuk melindungi kesihatan manusia dan alam sekitar.

Penjerapan adalah teknik yang lebih baik berbanding teknik-teknik lain kerana

murah, mudah dijalankan dan berkesan. Selain menghasilkan penjerap yang

berkesan, ramai penyelidik memberi tumpuan lebih kepada penggunaan bahan

mentah yang murah dan bukan berasaskan petroleum seperti serat semulajadi.

Tumbuhan berserabut kenaf (Hibiscus cannabinus L.) adalah salah satu tanaman

komersial di Malaysia yang digunakan dalam pelbagai sektor kerana sifat-sifatnya.

Oleh itu, penggunaannya untuk pengingkiran logam berat daripada air dan bahan

buangan adalah bernilai untuk diterokai. Serat kenaf telah dicangkukkan melalui

proses pempolimeran dengan metil akrilat dan diikuti oleh tindak balas dengan

hidroksilamin hidroklorida untuk menukarkan keimplan esternya kepada poli(asid

hidroksamik) yang diketahui mampu membentuk kompleks dengan ion logam.

Kesan-kesan pelbagai parameter penting ketika proses cangkukkan yang boleh

mempengaruhi peratus cangkukkan seperti jumlah mangkin, mangkin bersama dan

monomer, suhu dan masa pempolimeran telah dikaji diikuti kesan pH dan jumlah

iν

hidroksilamina hidroklorida pada peratus penyingkiran ketika proses hidroksilaminolisis. Sifat serat kenaf, serat kenaf telah dicangkukkan dan serat kenaf telah difungsikan telah di uji dengan ujian kompleks berwarna dengan ion vanadium, TGA, analisis CHN/O, analisis permukaan BET, FTIR dan SEM-EDX spektroskopi. Penyelidikan ini juga mengkaji kesan-kesan pH, masa tindak balas, kepekatan logam asal, jumlah penjerap dan suhu pada kapasiti penjerapan untuk penyingkiran Ni (II), Cr (III) dan Cr (VI) ion.

Amaun mangkin, mangkin bersama dan monomer yang optimum untuk pempolimeran cangukkan metil akrilat ke atas 5.0 g serat kenaf ialah masing-masing 15 mL, 0.50 g dan 30 mL. Nilai peratus cantuman paling tinggi dengan 2 jam tindak balas pempolimeran pada suhu 45 °C. Ketika penyediaan PHA-kenaf, 1.0 g hidroksilamina hidroklorida dalam 15 mL larutan methanol pada pH 13 yang ditindak balas dengan 1.0 g PMA-kenaf memberikan nilai kapasiti penjerapan ion Spektrum FTIR, TGA, analisis BET, analisis unsur CHN/O, logam yang tinggi. ujian kompleks berwarna dengan ion vanadium, imej SEM dan spektra EDX telah menunjukkan PMA-kenaf dan PHA-kenaf telah berjaya dihasilkan. Optimum pH bagi penjerapan Ni (II), Cr (III) dan Cr (VI) masing-masing ialah 6, 4 dan 3. Kapasiti penjerapan juga bergantung pada kepekatan ion Ni (II), Cr (III) dan Cr (VI), masa tindak balas dan jumlah penjerap. Penjerapan Ni (II), Cr (III) dan Cr (VI) mematuhi pseudo oder kedua. Data keseimbangan menunjukkan penjerapan mematuhi model Langmuir dengan kapasiti maksimum penjerapan bagi Ni (II), Cr (III) dan Cr (VI) masing-masing ialah 43.29, 13.42 and 30.12 mg/g. Proses penjerapan adalah endotermik dan spontan.

ACKNOWLEDGEMENTS

In the Name of Allah, The Most Merciful and Most Beneficiet

First and foremost, I would like to take this opportunity to express my sincere appreciation to my project supervisor Prof. Dr. Hj. Md. Jelas Haron, and also cosupervisors Dr. Nor Azowa Ibrahim and Prof. Dr. Mansor Ahmad for their supervision, invaluable guidance, unfailing help, advice and suggestion throughout the duration of my study. I would like to thank to Universiti Putra Malaysia for financial support through Research University Grant Scheme funds and Graduate Research Fellowship. Special thanks to all the staff in Faculty of Science for their assistance and cooperation that in one way or another has contributed to the success of this study. Thanks too to my course mates, lab mates, and friends for their help, encouragement and comments in sustaining the morale and enthusiasm. Last but not least, I would like to express my deepest appreciation to my beloved family for their caring, patience, support and understanding during difficult times. With their unconditional and endless love, praise to Allah that make me possible to complete my study.

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Md. Jelas Haron, PhD

Professor Faculty of Science Universiti Putra Malaysia (Chairman)

Nor Azowa Ibrahim, PhD

Senior Lecturer Faculty of Science Universiti Putra Malaysia (Member)

Mansor Ahmad, PhD

Professor Faculty of Science Universiti Putra Malaysia (Member)

BUJANG BIN KIM HUAT, PhD

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date:

DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

SOLEHA MOHAMAT YUSUFF

Date: 31 MAY 2013

LIST OF TABLES

Table		Page
3.1	Materials used with their supplier manufacturers and grades	46
4.1	The data of IR frequencies in kenaf, PMA-kenaf, PHA-kenaf, PHA-kenaf fiber after V (V), Cr (III), Cr (VI) and Ni (II) ions adsorption	82
4.2	The adsorption capacity (q) and percentage removal (Pr) of $V(V)$ ion by kenaf and PHA-kenaf	84
4.3	The content of carbon, hydrogen, nitrogen, and oxygen in kenaf, PMA-kenaf, and PHA-kenaf	85
4.4	Thermal analysis of kenaf, PMA-kenaf and PHA-kenaf fiber	95
4.5	Kinetic parameters for Cr (III), Cr (VI) and Ni (II) ions adsorption by PHA-kenaf fiber	107
4.6	Isotherm parameters for Cr (III), Cr (VI) and Ni (II) ions adsorption by PHA-kenaf fiber	114
4.7	Thermodynamic parameters of Cr (III), Cr (VI) and Ni (II) ions adsorption (b is Langmuir constant)	117
4.8	Selectivity values of PHA-kenaf fiber and the distribution ratio for desired metal ions and foreign metal ions	121
4.9	Percentages removal of (a) Cr(VI) and (b) Ni (II) from a sample of wastewater from glove, wood treatment, and electronic industries using PHA-kenaf adsorbent	124

LIST OF FIGURES

Figure		Page
2.1	General structure of a hydroxamic acid	24
2.2	Modes of binding of hydroxamic acids to transitions metal ions	24
2.3	Formation of M (II) complexes with hydroxamic acid	25
2.4	Octahedral coordination of tris-hydroxomato complexes with M (III) metal ions	26
2.5	Proposed structure of Cr(VI) hydroximato complexes	26
2.6	Fe (III)-DFO complex	27
2.7	Ni(II)-Bis(2-(2-mercaptophenyl)imino-4-pentano) complex	28
2.8	Equations of formation of hydroxamic acid from ester group	29
2.9	The conversion of poly(methyl acrylate) grafted OPEFB to poly(hydroxamic acid) grafted OPEFB	29
2.10	Reaction of ester with hydroxylamine to produce hydroxamic acid	30
2.11	Kenaf stalk: 1) kenaf's flower 2) bast fiber 3) core fiber	31
2.12	Kenaf stalk: a) bast and core b) core fiber c) bast fiber	32
2.13	Cellulose structure	32
2.14	Structure of lignin polymer from poplar	33
2.15	Main (A) and side (B) chains of graft copolymers	39
2.16	Chemical structure of methyl acrylate monomer	40
2.17	The proposed mechanism of graft copolymerization of MA onto rubberwood fiber using H_2O_2 and Fe^{2+} initiator	43
4.1	Effect of Fe (II) amount on Pg of PMA-kenaf and percentage of Pb(II) adsorption (Pr) by PHA-kenaf	65
4.2	Effect of H_2O_2 amount on Pg of PMA-kenaf and percentage of Pb(II) adsorption (Pr) by PHA-kenaf	67

4.3	Effect of polymerization time on Pg of PMA-kenaf and percentage of Pb(II) adsorption (Pr) by PHA-kenaf	69
4.4	Effect of polymerization temperature on Pg of PMA-kenaf and percentage of Pb(II) adsorption (Pr) by PHA-kenaf	71
4.5	Effect of MA amount on Pg of PMA-kenaf and percentage of Pb(II) adsorption (Pr) by PHA-kenaf	73
4.6	Effect of hydroxylamine hydrochloride amount on adsorption capacity (q) and percentage of Cr (III) adsorption (Pr) by PHA-kenaf	74
4.7	Effect of pH hydroxylamine solution on adsorption capacity (q) and percentage of Cr (III) adsorption (Pr) by PHA-kenaf	75
4.8	Adsorption capacities of kenaf and PHA-kenaf for various heavy metal ions	77
4.9	The spectra of kenaf, PMA-kenaf, and PHA-kenaf (a) from 4000 to 2200 cm ⁻¹ and (b) from 2200 to 280 cm ⁻¹ of wavenumber	79
4.10	(a) The spectra of PHA-kenaf fiber after Cr (III), Cr (VI) and Ni (II) ions adsorption from 4000 to 2200 cm ⁻¹ wavenumber	80
	(b) The spectra of PHA-kenaf, PHA-kenaf after Cr (III), Cr (VI) and Ni (II) ions adsorption from 2200 to 280 cm ⁻¹ of wavenumber	81
4.11	SEM images at 1000 x magnification of (a) kenaf fiber and (b) PMA-kenaf	86
	(c) SEM images at 1000 x magnification of PHA-kenaf fiber	87
4.12	EDX spectra of (a) kenaf, (b) PMA-kenaf, (c) PHA-kenaf, (d) PHA-kenaf after sorption of V (V) ion, (e) PHA-kenaf after sorption of Cr (III) ion, (f) PHA-kenaf after sorption of Cr (VI) ion and (g) PHA-kenaf after sorption of Ni (II) ions	91
4.13	(a) TGA curve and (b) DTG curve of kenaf, PMA-kenaf and PHA-kenaf fiber	93
4.14	The proposed reaction mechanism of graft copolymerization of MA monomer onto kenaf fiber	95
4.15	The proposed reaction mechanism of conversion of PMA-kenaf into PHA-kenaf	96

4.16	Effect of pH on (a) Cr (III), (b) Ni (II) and (c) Cr (VI) ions adsorption by kenaf and PHA-kenaf	98
4.17	Effect of PHA-kenaf dosage on (a) Cr (III), (b) Cr (VI) and (c) Ni (II) ions adsorptions	102
4.18	Effect of reaction time on adsorption of (a) Cr (III), (b) Cr (VI) and (c) Ni (II) ions at different concentration	103
4.19	Pseudo first-order kinetic model for adsorption of (a) Cr (III), (b) Cr (VI) and (c) Ni (II) by PHA-kenaf	104
4.20	Pseudo second-order kinetic model for adsorption of (a) Cr (III), (b) Cr (VI) and (c) Ni (II) by PHA-kenaf	105
4.21	Effect of initial concentration on adsorption capacity of (a) Cr (III), (b) Cr (VI) and (c) Ni (II) ions at different temperature	109
4.22	Langmuir isotherm model for adsorption of (a) Cr (III), (b) Cr (VI) and (c) Ni (II) by PHA-kenaf	111
4.23	Freundlich isotherm model for adsorption of (a) Cr (III), (b) Cr (VI) and (c) Ni (II) by PHA-kenaf	112
4.24	The Van't Hoff plot for Cr (III), Cr (VI) and Ni (II) ions adsorption	115
4.25	The adsorption selectivity in binary systems for (a) Cr (III), (b) Cr (VI) and (c) Ni (II) ions	119
4.26	Desorption percentage of (a) Cr (III), (b) Cr (VI) and Ni (II) ions	122

LIST OF ABBREVIATIONS

BET Brunauer Emmett Teller

Ce Final metal concentration

CHN/O Carbon Hydrogen Nitrogen/ Oxygen

Co Initial metal concentration

Distribution ratio

DTG Derivative thermogravimetric

EDX Energy dispersive X-ray

FTIR Fourier transform infrared spectroscopy

Ge Percentage of grafting efficiency

I Increment

IUPAC International Union of Pure and Applied Chemistry

OPEFB Oil palm empty fruit bunch

Pg Percentage of grafting

PHA Poly(hydroxamic acid)

PMA Poly(methyl acrylate)

Pr Percentage of removal

q Adsorption capacity

R Universal gas constant

rpm Revolution per minute

S Selectivity

t Time

T Temperature

TGA Thermogravimetric analysis

T_{max} Maximum temperature

v frequency

TABLE OF CONTENTS

			Page
ABS	STRACT	1	ii
	STRAK		iv
AC	KNOWL	EDGEMENTS	vi
API	PROVAL	1	vii
	CLARAT		ix
	T OF TA		X
	T OF FIG		хi
LIS	T OF AE	BBREVIATIONS	xiv
CH	APTER		
1	INT	RODUCTION	1
	1.1	Overview of Study	1
	1.2	,	5
	1.3	· ·	5
	1.4	Scope of Study	6
2	LIT	ERATURE REVIEW	8
	2.1	Chromium, Cr	8
		2.1.1 General properties	8
		2.1.2 Sources	9
		2.1.3 Cr effect on human health	9
	2.2	Nickel, Ni	10
		2.2.1 General properties	10
		2.2.2 Sources	11
		2.2.3 Ni effect on human health	12
	2.3	Adsorption techniques	13
		2.3.1 Adsorption Kinetics: Pseudo first-order and pseudo second-order model	16
		2.3.2 Adsorption Isotherm: Langmuir and Freundlich models	19
	2.4	Mechanism of adsorption of metal ion	22
		2.4.1 Ion exchange	22
		2.4.2 Formation of complex	23
		2.4.2.1 Chelate formation with hydroxamic acid	24
		2.4.3 Synthesis of hydroxamic acid (Hydroxyaminolysis)	28

	2.5	Natura	l fiber: Ken	naf	30
		2.5.1	Removal	of heavy metal by untreated	33
				d other natural fiber	
		2.5.2	Removal	of heavy metals by modified	37
			kenaf fib	er	
	2.6	Graft c	opolymeriz	zation	39
		2.6.1	Monome	r: Methyl acrylate	40
		2.6.2	Initiator:	Ferrous ion-peroxide redox	41
			system		
	2.7	Batch a	adsorption	studies for removal of metal ions	42
		by adso	orbent: Effe	ect of pH, initial concentration,	
		time ar	nd dosage		
2	МАТ	FEDIAL	S AND MI	THODS	46
3	IVIA	LUNIAL	5 AND MI		40
	3.1	Materi	als		46
		3.1.1	Preparati	on of kenaf fiber	48
		3.1.2	-	on of methyl acrylate	48
		3.1.3	Preparati	on of stock and buffer solutions	49
	3.2	Prepar	ation of PN	/IA-kenaf	49
		3.2.1	Graft cop	polymerization procedure	49
		3.2.2	Preparati	on of PHA-kenaf	50
		3.2.3	Test for a	adsorption of Pb (II) ion	51
		3.2.4	Optimiza	tion for preparation of PMA-	52
			kenaf		
			3.2.4.1	Effect of Fe(II)	52
			3.2.4.2	Effect of H ₂ O ₂	52
			3.2.4.3	Effect of temperature of	52
				polymerization	
			3.2.4.4	Effect of time of	53
				polymerization	
				Effect of MA	53
		3.2.5	-	on of large amount of PMA-	53
			kenaf: Sc		
	3.3	-		IA-kenaf from PMA-kenaf	54
		3.3.1		aminolysis procedure	54
		3.3.2		adsorption of Cr (III) ion	54
		3.3.3	-	tion for preparation of PHA-	55
			kenaf	Ticc	
			3.3.3.1	Effect of hydroxylamine	55
			2222	hydrochloride	5 .0
			3.3.3.2	Effect of pH hydroxylamine solution	56
		221	Droporoti		56
		3.3.4	-	on of large amount of PHA-	56
	3.4	Adsom	kenaf: Sc	avy metals at natural pH by kenaf	56
	J. 4	-	HA-kenaf	ivy metais at natural pri by Kellal	30
	3.5		terization (of fibers	57
	5.5	3.5.1			57
		0.0.1	in spe		01

		3.5.2	Vanadium test	57	
		3.5.3	CHN/O analysis	58	
		3.5.4	•	58	
		3.5.5	TGA analysis	59	
	3.6		experiments: Adsorption of Cr(III), Cr(VI)	59	
			i(II) ion		
		3.6.1	Effect of pH	59	
		3.6.2	\mathcal{E}	60	
		3.6.3		60	
		3.6.4		60	
		3.6.5	5 5	61	
		3.6.6	1 0	62	
		3.6.7	Treatment of industrial wastewater	63	
4	RES	ULTS A	ND DISCUSSIONS	64	
	4.1	Prepar	ration of PMA-grafted kenaf fiber	64	
		4.1.1	Optimization of Fe(II) amount	64	
		4.1.2	Optimization of H ₂ O ₂ amount	66	
		4.1.3	Optimization of time reaction	67	
		4.1.4	Optimization of temperature	68	
		4.1.5	Optimization of MA amount	70	
	4.2	Conve	rting PMA-kenaf to PHA-kenaf	72	
		4.2.1	Effect of hydroxylamine hydrochloride	72	
			amount		
		4.2.2	Effect of pH of hydroxylamine solution	73	
			on adsorption capability of PHA		
	4.3		ption of heavy metals at natural pH by kenaf	75	
		and PHA-kenaf			
	4.4		cterization of fibers	76	
			IR spectra	76	
			Vanadium test	82	
		4.4.3	CHN/O analysis	82	
		4.4.4	SEM image	83	
		4.4.5	EDX analysis	85	
	4.5	4.4.6	TGA analysis	87	
	4.5	Mecha		93	
		4.5.1	Graft copolymerization of MA onto kenaf	93	
		4.5.0	fiber	0.6	
		4.5.2	Preparation of PHA-kenaf from PMA-kenaf	96	
	4.6	Adsor	ption removal of Ni(II), Cr(III) and Cr(VI)	98	
		•	A-kenaf		
		4.6.1	1	98	
		4.6.2	Effect of adsorbent dosage	100	
		4.6.3		101	
		4.6.4	Adsorption Kinetic: Pseudo first-order	102	
			and pseudo second-order model		
		4.6.5	Effect of initial concentration	108	

		4.6.6	Adsorption Isotherm: Langmuir and	109	
			Freundlich models		
	4.7	Therm	odynamic study	111	
	4.8	Selecti	Selectivity study		
	4.9	Desor	otion study	119	
	4.10	Treatn	nent of Industrial Wastewater	122	
5			, CONCLUSION AND NDATIONS FOR FUTURE RESEARCH	125	
REF	'ERENC'	ES		128	
	DATA O		DENT	149	
_	r of PU			150	
(Pub	lications	that ari	ise from study)-if applicable		