NON-VIRAL TRANSFECTION OF BONE MARROW-DERIVED MESENCHYMAL STEM CELL WITH HUMAN INTERFERON-GAMMA GENE AND IN VITRO EFFICIENCY AGAINST CHRONIC MYELOID LEUKAEMIA CELLS

LIEW LEE CHUEN

FPSK(m) 2013 22
NON-VIRAL TRANSFECTION OF BONE MARROW-DERIVED MESENCHYMAL STEM CELL WITH HUMAN INTERFERON-GAMMA GENE AND IN VITRO EFFICIENCY AGAINST CHRONIC MYELOID LEUKAEMIA CELLS

By

LIEW LEE CHUEN

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

June 2013
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of University Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of University Putra Malaysia.

Copyright © University Putra Malaysia
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

NON-VIRAL TRANSFECTION OF BONE MARROW-DERIVED MESENCHYMAL STEM CELL WITH HUMAN INTERFERON-GAMMA GENE AND IN VITRO EFFICIENCY AGAINST CHRONIC MYELOID LEUKAEMIA CELLS

By

LIEW LEE CHUEN

June 2013

Chairman : Maha Abdullah, PhD

Faculty : Medicine and Health Sciences

Chronic myeloid leukemia (CML) is a hematopoietic stem cell disorder caused by the BCR/ABL gene rearrangement, known as the Philadelphia (Ph) chromosome. To date, the only curative therapy for CML is allogeneic stem cell transplantation. However, significant morbidity and mortality are associated with the procedure and the need for a matched donor makes this option not available to the majority of the patients. Currently, various studies have been carried out to develop an alternative approach for CML treatment, for example targeted gene delivery of therapeutic cytokines. In this study, the feasibility of using bone marrow-derived mesenchymal stem cell (BM-MSC) in delivering human interferon-gamma (hIFN-γ) gene for targeted CML therapy was explored. Mesenchymal stem cells (MSC) were successfully isolated from human bone marrow aspirates and their biological properties were similar to those of MSC reported. Expanded BM-MSC were transfected with plasmid containing hIFN-γ gene (pORF-hIFN-γ) via nucleofection.
Gene transfer efficiency was determined based on intracellular hIFN-γ expression via flow cytometry and was found to be at 54.28±11.34%. The *in vitro* expression of hIFN-γ mRNA and protein in BM-MSC were also analysed at intervals of 24 h, up to 5 days post nucleofection, via real-time PCR and ELISA, respectively. Real-Time PCR data analysis showed significant up-regulation of hIFN-γ mRNA in nucleofected BM-MSC when compared to non-transfected BM-MSC (P=0.043). BM-MSC harbouring pORF-hIFN-γ could express hIFN-γ protein *in vitro*. This cytokine production was achieved as high as 3.47±1.03 ng/ml after 72 hours of nucleofection. The effect of hIFN-γ produced in nucleofected BM-MSC on the proliferation of CML cell line (K562) *in vitro* was also investigated. K562 growth was inhibited at 61.12±16.38% after seven days of co-culture with BM-MSC expressing hIFN-γ (P=0.006). In conclusion, findings in the current study indicated that hIFN-γ produced by genetically engineered BM-MSC successfully inhibited the proliferation of K562 cells *in vitro*. Thus, MSC as cellular vehicle in hIFN-γ gene delivery could be further explored as a promising treatment option for CML patients.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

TRANSFEKSI GEN INTERFERON-GAMMA KE DALAM SEL STEM MESENKIMIA DARIPADA SUMSUM TULANG SECARA BUKAN VIRUS DAN KEBERKESANAN MENENTANG SEL LEUKEMIA MIELOGENUS KRONIK IN VITRO

Oleh

LIEW LEE CHUEN

Jun 2013

Pengerusi : Maha Abdullah, PhD
Fakulti : Perubatan dan Sains Kesihatan

Leukemia mielogenus kronik (CML) merupakan sejenis leukemia kronik yang dicirikan oleh peningkatan penghasilan klon sel-sel mieloid secara tidak terkawal akibat daripada translokasi gen ABL dan gen BCR, umumnya dikenali sebagai kromosom Philadelphia. Sehingga kini, transplantasi sumsum tulang merupakan satu-satunya terapi kuratif yang berpotensi untuk CML. Walau bagaimanapun, morbiditi and mortaliti yang dikaitkan dengan prosedur transplantasi and keperluan penderma yang sesuai telah menyebabkan terapi tersebut tidak dapat disediakan kepada kebanyakan pesakit. Oleh yang demikian, pelbagai penyelidikan telah dijalankan pada masa kini dengan tujuan untuk memperkembangkan satu rawatan novel untuk CML, contohnya penghantaran sitokin terapeutik ke sasaran. Dalam kajian ini, penggunaan sel stem mesenkima yang diperoleh daripada sumsum tulang dalam penghantaran gen interferon-gamma manusia (hIFN-γ) sebagai terapi sasaran
bagi CML telah dikaji. Sel stem mesenkima (MSC) telah berjaya dipencilkan daripada aspirasi sumsum tulang manusia dan sifat-sifat biologi sel ini adalah serupa dengan MSC yang dilaporkan. MSC sumsum tulang manusia (BM-MSC) ini kemudian ditransfeksi dengan plasmid mengekod gen hIFN-γ dengan menggunakan teknologi nukleofeksi. Keberkesanan transfeksi telah ditemui berdasarkan ekspresi hIFN-γ intraselular dengan menggunakan sitometri aliran. Keberkesan transfeksi sebanyak 54.28±11.34% telah tercapai selepas 24 jam nukleofeksi. Ekspresi mRNA dan protein hIFN-γ di dalam BM-MSC secara in vitro juga dikesan setiap 24 jam selepas nukleofeksi, selama 5 hari dengan menggunakan tindak balas rantai polimerase masa nyata (real-time PCR) dan ELISA masing-masing. Keputusan tindak balas rantai polimerase masa nyata menunjukan peningkatan ekspresi mRNA hIFN-γ yang ketara dalam sampel nukleofeksi BM-MSC berbanding dengan BM-MSC yang tidak dinukleofeks (P=0.043). Di samping itu, BM-MSC yang telah dinukleofeks dengan plasmid pORF-hIFN-γ juga berupaya menghasilkan protein hIFN-γ secara in vitro. Produksi protein hIFN-γ yang paling tinggi ialah 72 jam selepas nukleofeksi, dimana sebanyak 3.47±1.03 ng/ml protein hIFN-γ telah dikesan.

Selain itu, kesan hIFN-γ yang dihasilkan oleh nukleofeksi BM-MSC terhadap proliferasi sel CML (K562) juga turut dikaji. Proliferasi sel K562 telah ditindas sebanyak 61.12±16.38% apabila kultur bersama nukleofeksi BM-MSC selepas 7 hari (P=0.006). Secara kesimpulannya, penemuan dalam kajian semasa menunjukkan bahawa hIFN-γ yang dihasilkan secara modifikasi genetik BM-MSC telah berjaya menindas proliferasi sel K562 in vitro. Oleh itu, MSC sebagai pengangkutan selular dalam penghantaran gen hIFN-γ boleh terus diterokai sebagai rawatan alternatif yang berkesan untuk pesakit CML.
ACKNOWLEDGEMENTS

First and foremost, I would like to express utmost gratitude to my supervisor, Assoc. Prof. Dr. Maha Abdullah, for her patience to guide me along the research with her immense knowledge and motivation. Her valuable guidance has helped me throughout the research and completion of this thesis.

It gives me great pleasure in acknowledging my co-supervisors, Emeritus Prof. Dr. Cheong Soon Keng, Assoc. Prof. Dr. Leong Chooi Fun and Assoc. Prof. Dr. Chong Pei Pei, for their timely support and insightful comments. My sincere thanks also go to Dato’ Mohd Farid Ariffin, the Founder and President of National Cancer Council Malaysia (MAKNA), for his moral support in research activities and generosity in providing grant to enable the research to be carried out. I would also like to share the credit of my work with my seniors and fellow labmates – Wei Yi, Chee Yin, Erica, Yuen Fen and especially Hoon Koon and Rachel, for their guidance and discussion that has polished up both my research and thesis writing.

Last but not least, I would like to thank my family and friends for their love and unconditional support, letting me focus on my study and help me to make it through hurdles that I faced throughout the study.

This dissertation would not have been possible without the help and guidance of all the individuals mentioned above, and to whom that I did not mention but nevertheless contributed in one way or another to the success of this thesis, a big THANK YOU to you all.
I certify that a Thesis Examination Committee has met on 7 June 2013 to conduct the final examination of Liew Lee Chuen on her thesis entitled “Non-viral Transfection of Bone Marrow-Derived Mesenchymal Stem Cell with Human Interferon-gamma Gene and In Vitro Efficiency Against Chronic Myeloid Leukaemia Cells” in accordance with the Universities and University Colleges Act 1971 and the Constitution of the University Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of Thesis Examination Committee were as follows:

Mohamad Aziz bin Dollah, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Sharmili Vidyadaran, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Internal Examiner)

Noorjahan Banu binti Mohamad Alitheen, PhD
Associate Professor
Faculty of Biotechnology and Biomolecular
Universiti Putra Malaysia
(Internal Examiner)

Ainoon Othman
Professor
Faculty of Medicine and Health Sciences
Universiti Sains Islam Malaysia
(External Examiner)

NORITAH OMAR, PhD
Assoc. Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 2 August 2013
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Maha Abdullah, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Chong Pei Pei, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

Cheong Soon Keng
Professor and Dean
Faculty of Medicine and Health Sciences
Universiti Tunku Abdul Rahman
(Member)

Leong Chooi Fun
Associate Professor
Department of Pathology
Universiti Kebangsaan Malaysia Medical Centre
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I declare that the thesis is my original work except for the quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

LIEW LEE CHUEN

Date: 7th June 2013
TABLE OF CONTENTS

ABSTRACT .. ii
ABSTRACT .. iv
ACKNOWLEDGEMENTS vi
APPROVAL ... vii
DECLARATION .. ix
LIST OF TABLES ... xiv
LIST OF FIGURES xv
LIST OF ABBREVIATIONS xvii

CHAPTER

1 INTRODUCTION 1

2 LITERATURE REVIEW 6
 2.1 Chronic Myeloid Leukaemia 6
 2.1.1 Introduction 6
 2.1.2 Treatment Outcome 7
 2.2 An Overview of Stem Cell 9
 2.3 Mesenchymal Stem Cell (MSC) 11
 2.3.1 Historical Overview and Nomenclature of
 MSC .. 11
 2.3.2 Properties of MSC 14
 2.3.2.1 Morphology and Immunophenotype 14
 2.3.2.2 Differentiation Capacity 16
 2.3.2.3 Immunomodulatory Properties 17
 2.3.2.4 Homing Ability 19
 2.3.3 Clinical Potential of Mesenchymal Stem Cells
 2.3.3.1 MSC for the Treatment of Graft-
 Versus-Host Disease 22
 2.3.3.2 The Use of MSC in Regenerative
 Medicine 26
 2.3.3.3 MSC as Potential Vehicle for
 Therapeutic Genes Delivery 29
 2.4 Gene Delivery Systems 33
 2.4.1 Viral-based Gene Delivery System 34
 2.4.1.1 Integrating Viral Vector 35
 2.4.1.2 Non-integrating Viral Vector 39
 2.4.2 Non-viral Gene Delivery System 40
 2.4.2.1 Chemical Methods 41
 2.4.2.2 Physical Methods 44
 2.4.3 Nucleofection 47
 2.5 The Interferons (IFNs) 49
MATERIALS AND METHODS

3.1 Experimental Design

3.2 Isolation of Mononuclear Cells From Bone Marrow Aspirate

3.3 Cell Count

3.4 Cell Culture

3.4.1 Culture of Bone Marrow-Derived Adherent Cells

3.4.2 Culture of Chronic Myeloid Leukaemia Cells Line (K562)

3.5 Characterisation of Bone Marrow-Derived Adherent Cells

3.5.1 Morphology Study under Microscopic Observation

3.5.2 Immunophenotyping

3.5.3 Differentiation Assays

3.5.3.1 Adipogenic Differentiation

3.5.3.2 Osteogenic Differentiation

3.5.3.3 Chondrogenic Differentiation

3.6 Preparation of Plasmid pORF-hIFN-γ for Transfection

3.6.1 Plasmid pORF-hIFN-γ

3.6.2 *E. coli* Culture Media and Antibiotic

3.6.2.1 Liquid Media

3.6.2.2 Solid Media

3.6.2.3 Antibiotic

3.6.3 Growth and Storage of pORF-transformed Bacteria

3.6.4 Verification of Plasmid pORF-hIFN-γ from Transformed *E. coli* Clones

3.6.4.1 Colony PCR (Polymerase Chain Reaction)

3.6.4.2 Gel Electrophoresis

3.6.4.3 Plasmid Extraction and Sequencing

3.7 Nucleofection of Bone Marrow-Derived Mesenchymal Stem Cells

3.7.1 Nucleofection Protocol

3.7.2 Gene Transfection Efficiency and Viability of Cells Post Nucleofection

3.7.2.1 Transfection Efficiency of pmaxGFP into BM-MSC

3.7.2.2 Transfection Efficiency of pORF-hIFN-γ into BM-MSC

3.7.2.3 Viability of Cells after Nucleofection

3.7.3 Morphology, Immunophenotyping and Differentiation Potential of Nucleofected BM-MSC

3.8 Functional Status of Human Interferon Gamma Gene in Nucleofected BM-MSC

3.8.1 Quantitative Real-Time PCR Analysis of
hIFN-γ mRNA Expression in Nucleofected BM-MSC

3.8.1.1 Total Ribonucleic Acid (RNA) Extraction

3.8.1.2 DNase I Treatment of RNA

3.8.1.3 Determination of RNA Integrity

3.8.1.4 Reverse Transcription of RNA to cDNA

3.8.1.5 Quantitative Real-Time PCR Quantification

3.8.2 Protein Expression of hIFN-γ in Nucleofected BM-MSC via ELISA

3.9 K562 Cell Proliferation Assay

3.9.1 Establishment of Growth Profile for K562 cells

3.9.2 Inhibition Effect of Nucleofected BM-MSC on K562 Cell Proliferation

3.10 Statistical Analysis

4 RESULTS

4.1 Characterisation of Isolated Bone Marrow-Derived Adherent Cells

4.1.1 Morphology Study under Microscopic Observation

4.1.2 Immunophenotyping

4.1.3 Differentiation Assays

4.1.3.1 Adipogenic Differentiation

4.1.3.2 Osteogenic Differentiation

4.1.3.3 Chondrogenic Differentiation

4.2 Verification of Plasmid pORF-hIFN-γ from Transfected E. coli Colonies

4.2.1 Colony PCR (Polymerase Chain Reaction)

4.2.2 Plasmid Purification and Verification

4.3 Transfection Efficiency and Viability of Cell Post Nucleofection

4.3.1 Nucleofection of BM-MSC with plasmid pmaxGFP

4.3.2 Nucleofection of BM-MSC with plasmid pORF-hIFN-γ

4.4 Morphology, Immunophenotypes and Differentiation Potential of Nucleofected BM-MSC

4.5 mRNA Expression of hIFN-γ in Nucleofected BM-MSC

4.5.1 RNA Purity and Integrity

4.5.2 Real-Time PCR Quantification

4.5.2.1 Validation Experiment

4.5.2.2 mRNA Expression of hIFN-γ in nucleofected BM-MSC

4.6 Protein Expression of hIFN-γ in Nucleofected BM-MSC
4.7 K562 Cell Proliferation Assay
 4.7.1 Establishment of Growth Profile for K562 Cells
 4.7.2 Inhibition Effect of Nucleofection BM-MSC on K562 Cell Proliferation

5 DISCUSSION
 5.1 Characterisation of Isolated Bone Marrow-Derived Adherent Cells
 5.2 Transfection Efficiency and Viability of BM-MSC Post Nucleofection
 5.3 In vitro Expression of Human Interferon-gamma in Nucleofected BM-MSC and Their Inhibition Effect on K562 Cell Proliferation

6 CONCLUSION AND FUTURE RECOMMENDATIONS
 6.1 Conclusion
 6.2 Future recommendations

REFERENCES
APPENDIX A – Information Sheets
APPENDIX B – Data Sets
BIODATA OF STUDENT
PUBLICATION