EFFECTIVENESS OF DISPERSIVE SOLID PHASE EXTRACTION SORBENTS FOR SAMPLE CLEAN-UP BY QuEChERS METHOD FOR ORGANOCHLORINE PESTICIDES DETERMINATION IN PACIFIC WHITE SHRIMP

NORAZLINA OMAR

FSTM 2013 7
EFFECTIVENESS OF DISPERSIVE SOLID PHASE EXTRACTION SORBENTS FOR SAMPLE CLEAN-UP BY QuEChERS METHOD FOR ORGANOCHLORINE PESTICIDES DETERMINATION IN PACIFIC WHITE SHRIMP

By

NORAZLINA OMAR

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

June 2013
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
Dedicated to my beloved husband, mak, abah, abang and the rest of family members.
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

EFFECTIVENESS OF DISPERSIVE SOLID PHASE EXTRACTION SORBENTS FOR SAMPLE CLEAN-UP BY QuEChERS METHOD FOR ORGANOCHLORINE PESTICIDES DETERMINATION IN PACIFIC WHITE SHRIMP

By

NORAZLINA OMAR

June 2013

Chair : Professor Jamilah Bakar, PhD

Faculty: Food Science and Technology

Organochlorine pesticides (OCPs) are persistent in the environments and have the ability to bioaccumulate in the food chain and are capable of causing various health hazards. The sample preparation techniques used for monitoring of OCPs in food are usually complicated, time consuming, use large volume of solvents and expensive. An ideal multi-residue method with high recoveries should be rapid, easy to perform, accurate, low cost and safer to the analyst due to less exposure to organic solvent and waste. The Quick Easy Cheap Effective Rugged and Safe (QuEChERS) is one of such methods. The objectives of this study are to evaluate the effectiveness of dispersive solid phase extraction (DSPE) sorbents in removing matrix interferences in
Pacific white shrimp, to validate the most effective sorbent using the QuEChERS method and compare to the modified AOAC Official method 983.21. Thus, the QuEChERS sample preparation method DSPE and gas chromatography mass spectrometry (GC-MS) with selected ion monitoring mode (SIM) has been improved and applied for the analysis of common OCPs (α-HCH, β-HCH, γ-HCH, δ-HCH, trans-chlordane, cis-chlordane, p,p'-DDE, p,p'-DDD and p,p'-DDT) in Pacific white shrimp (*Litopenaeus vannamei*). The combination of primary and secondary amine (PSA), octadecyl (C18) and/or graphitized carbon black (GCB) have been evaluated as clean-up sorbents to samples collected from the state of Kedah, Selangor and Terengganu. Sampling was conducted twice a year between February - June and July - November 2011 at two selected farms from each state. The results have shown the mean recoveries for PSA:C18, PSA:GCB and PSA:C18:GCB ranged between 93–100%, 98-105% and 98-105%, respectively. The relative standard deviations (RSD) of <14%, <15% and <10% were obtained for PSA:C18, PSA:GCB and PSA:C18: GCB, respectively. The PSA:C18 was not able to remove matrix interference, such as cholesterol. The sorbent efficiency to minimize matrix interferences was PSA:C18:GCB > PSA:GCB > PSA:C18. In the validation study, PSA:C18:GCB was validated for selectivity, limit of detection (LOD), limit of quantification (LOQ), linearity and working range, matrix effect, recovery, trueness and precision using the QuEChERS method. The range for LOD and LOQ were 0.9 - 4.5 ng/g and 3 - 15 ng/g, respectively. The correlation coefficients for matrix-matched calibration curves >0.99 were
obtained. All analytes had matrix enhancement effects with mild effect for \(\gamma \)-HCH, medium for \(\alpha \)-HCH, \(\beta \)-HCH, \(\delta \)-HCH, \textit{trans}-chlordane, \textit{cis}-chlordane and strong effect for \(p,p' \)-DDE, \(p,p' \)-DDD and \(p,p' \)-DDT. Mean recoveries of 98 – 105% with associated RSD of <4.2% had been obtained for the QuEChERS method. By using the modified AOAC Official Method 983.21, LOD and LOQ values for all OCPs were between 15 – 30 ng/g and 50 – 100 ng/g, respectively. The correlation coefficients for matrix-matched calibration curves >0.96 were obtained for the modified AOAC Official Method 983.21. All OCPs had mild signal suppression effects for the modified AOAC Official Method 983.21. Mean recoveries of 76 – 110% with associated RSD <6% were obtained. In term of LOD, LOQ, linearity, trueness and precision, the results indicated that the QuEChERS method was better than the modified AOAC Official Method 983.21. The validated QuEChERS method had been applied for the determination of nine OCPs in 65 samples from selected farms in Malaysia. OCPs were not detected in all samples. The results have indicated that this method could be adopted in routine analysis to reduce inspection time and cost of analysis and be used towards the International Standard requirements for laboratory accreditation.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

KEBERKESANAN PENJERAP PENGEKSTRAKAN SERAKAN FASA PEPEJAL UNTUK PEMBERSIHAN SAMPEL DENGAN KAEDAH QuEChERS UNTUK PENENTUAN RACUN PEROSAK ORGANOKLORIN DALAM UDANG PUTIH PASIFIK

Oleh

NORAZLINA OMAR

Jun 2013

Pengerusi : Professor Jamilah Bakar, PhD
Fakulti : Sains dan Teknologi Makanan

Racun perosak organoklorin (OCPs) adalah berterusan dalam persekitaran mempunyai keupayaan untuk berkumpul dalam rantaian makanan dan mampu menyebabkan pelbagai bahaya kesihatan. Teknik penyediaan sampel yang digunakan untuk pemantauan OCPs dalam makanan biasanya adalah rumit, memakan masa, menggunakan jumlah pelarut yang banyak dan mahal. Kaedah pelbagai residu yang ideal harus cepat, mudah untuk dilaksanakan, mempunyai pemulihan yang tinggi, tepat, murah dan selamat untuk jurunalisakan kerana kurang terdedah kepada pelarut organik dan sisa buangan. Pantas Mudah Murah Berkesan Lasak dan Selamat (QuEChERS) adalah salah satu kaedah tersebut. Objektif kajian ini ialah untuk menilai keberkesan penjerap
DSPE dalam menghapuskan gangguan matrik di dalam udang putih Pasifik, menjalankan validasi kaedah untuk penjerap yang paling berkesan menggunakan kaedah QuEChERS dan membandingkannya dengan kaedah rasmi AOAC 983.21 diubahsuai. Oleh itu, kaedah penyediaan sampel QuEChERS yang melibatkan pencekstrakan serakan fasa pepejal dan gas kromatografi spekrometri jisim (GC-MS) menggunakan mod pemantauan ion terpilih (SIM) telah diperbaiki dan digunakan untuk analisis organoklorin (α-HCH, β-HCH, γ-HCH, δ-HCH, trans-klordan, cis-klordan, p,p′-DDE, p,p′-DDD and p,p′-DDT) dalam udang putih Pasifik (Litopenaeus vannamei). Gabungan amina primer dan sekunder (PSA), C18 dan/atau karbon hitam bergrafit (GCB) telah dinilai sebagai penjerap pembersih untuk sampel yang diambil dari negeri Kedah, Selangor dan Terengganu. Persampelan telah dijalankan dua kali setahun iaitu antara bulan Februari dan November 2011 di dua ladang terpilih dari setiap negeri. Keputusan menunjukkan bahawa purata pemulihan untuk PSA:C18, PSA:GCB dan PSA:C18:GCB masing-masing berada di dalam julat 93–100%, 98-105% dan 98-105%. Sisihan piawai relatif (RSD) <14%, <15% dan <10% masing-masing telah diperolehi untuk PSA:C18, PSA:GCB dan PSA:C18:GCB. PSA:C18 tidak berupaya untuk menghapuskan gangguan matrik seperti kolesterol. Kecepatan penjerap untuk meminimumkan gangguan matrik adalah seperti berikut; PSA:C18:GCB > PSA:GCB > PSA:C18. Dalam kajian validasi, PSA:C18:GCB telah disahkan untuk parameter seperti selektiviti, had pengesanan (LOD), had kuantifikasi (LOQ), kelinearan, kesan matrik, pemulihan, ketepatan dan kejituan menggunakan
kaedah QuEChERS. LOD dan LOQ masing-masing berada pada julat 0.9 - 4.5 ng/g dan 3 - 15 ng/g. Korelasi pekali >0.990 telah diperolehi. Semua analit mempunyai kesan peningkatan matrik dengan kesan yang rendah untuk γ-HCH, sederhana untuk α-HCH, β-HCH, δ-HCH, trans-klordan, cis-klordan dan kesan yang tinggi untuk p,p'-DDE, p,p'-DDD dan p,p'-DDT. Purata pemulihan berjulat antara 98 – 105% dengan RSD < 4.2% telah diperolehi untuk kaedah QuEChERS. Dengan menggunakan kaedah rasmi AOAC 983.21 diubahsuai, nilai LOD dan LOQ masing-masing ialah di antara 15 – 30 ng/g dan 50 – 100 ng/g. Pekali korelasi bagi matriks dipadankan keluk penentukan >0.96 telah diperolehi bagi semua OCP untuk kaedah rasmi AOAC 983.21 diubahsuai. Kesemua OCP mempunyai kesan matrik dengan penindasan isyarat yang rendah untuk kaedah rasmi AOAC 983.21 diubahsuai. Purata pemulihan antara 76 – 110% dengan nilai RSD <6% telah diperolehi. Dari segi LOD, LOQ, kelinearan, ketepatan dan kejituan, keputusan menunjukkan bahawa kaedah QuEChERS adalah lebih baik berbanding kaedah rasmi AOAC 983.21 diubahsuai. Kedah QuEChERS yang disahkan telah digunakan untuk penentuan sembilan OCP dalam 65 sampel dari ladang terpilih di Malaysia. Semua sampel dikesan tidak mengandungi residu organoklorin. Keputusan menunjukkan bahawa kaedah ini boleh digunakan dalam analisis rutin untuk mengurangkan masa pemeriksaan dan kos analisis dan digunakan ke arah memenuhi keperluan Piawaian Antarabangsa bagi akreditasi makmal.
ACKNOWLEDGEMENTS

In the name of Allah, the Most Gracious and the Most Merciful, by His blessing
I have completed this thesis.

First and foremost my sincere appreciation and gratitude goes to my
supervisor Prof. Dr. Jamilah Bakar for her guidance, encouragement and
support throughout completion of this work. Not forgetting, I would like to
extend my appreciation to Assoc. Prof Dr. Sharifah Kharidah Syed
Muhammad as co-supervisor for her invaluable support.

I am deeply indebted to Ministry of Science, Technology and Innovative for the
scholarship awarded. I am grateful to Food Safety and Quality Division and
National Public Health Laboratory, Ministry of Health for their financial support
and facilities. Also, I would like to thank Department of Fisheries for their
support and collaboration.

My deepest gratitude and appreciation also goes to my beloved husband and
the rest of family members for their understanding and support. Also special
thanks to all staffs of Food Division in National Public Health Laboratory and
my colleagues who have assisted me in various aspects especially Zawiyah,
Tuan Zainazor, Wan Ainiza, Rafidah, Jamilah, Ganthimathi, Zailina, Zalilah,
Tosiah, Noraini, Haizan, Priscilla and Ramlah.
I certify that a Thesis Examination Committee has met on (24 June 2013) to conduct the final examination of Norazlina Omar on her thesis entitled “Effectiveness of Dispersive Solid Phase Extraction Sorbents During Clean-up in QuEChERS Technique for Analysis of Organochlorine Pesticides in Pacific White Shrimp (Litopenaeus vannamei)” in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Son Radu, PhD
Professor
Faculty Food Science and Technology
Universiti Putra Malaysia
(Chairman)

Mohd. Yunus Abd. Shukor, PhD
Associate Professor
Faculty Food Science and Technology
Universiti Putra Malaysia
(Internal Examiner)

Jinap Selamat, PhD
Professor
Faculty
Universiti Putra Malaysia
(Internal Examiner)

Bahruddin Saad, PhD
Professor
Faculty
Universiti Sains Malaysia
(External Examiner)

NORITAH OMAR, PhD
Assoc. Professor and Deputy Dean
School of Graduate Studies
Univerisiti Putra Malaysia

Date:
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Jamilah Bakar, PhD
Professor
Faculty Food Science and Technology
Universiti Putra Malaysia
(Chairman)

Sharifah Kharidah Syed Muhammad, PhD
Associate Professor
Faculty Food Science and Technology
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I declare that the thesis is my original work except for quotations and citation which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

NORAZLINA OMAR

Date: 24 June 2013
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td></td>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td></td>
<td>ACKNOWLEDGEMENTS</td>
<td>ix</td>
</tr>
<tr>
<td></td>
<td>APPROVAL</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>DECLARATION</td>
<td>xii</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>xvi</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>xviii</td>
</tr>
<tr>
<td></td>
<td>LIST OF ABBREVIATIONS</td>
<td>xxv</td>
</tr>
<tr>
<td>CHAPTER</td>
<td>1 INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>LITERATURE REVIEW</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>2.1 Pesticides</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>2.1.1 Definition and classification</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>2.1.2 Uses of pesticide</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>2.2 Safety issues of concern to human health</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>2.2.1 Health effects</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>2.2.2 Environmental effects</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>2.2.3 Contamination of organochlorine pesticides</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>2.3 Aquaculture production in Malaysia</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>2.4 Regulations on pesticide residues</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>2.5 Monitoring and surveillance programmes</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>2.6 Organochlorine pesticides</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>2.6.1 Hexachlorocyclohexane (HCH)</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>2.6.2 Chlordane</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>2.6.3 Dichlorodiphenyltrichloroethane and its metabolites</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>2.7 Sample preparation techniques for pesticide residues analysis</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>2.7.1 General principle</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>2.7.2 Conventional techniques</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>2.7.3 QuEChERS method</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>2.8 Quantification of pesticide residues using gas chromatographic technique</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>2.8.1 General principle</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>2.8.2 Gas chromatography separation</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>2.8.3 Gas chromatography mass spectrometric detection</td>
<td>40</td>
</tr>
</tbody>
</table>
2.9 Method validation
 2.9.1 General principle
 2.9.2 Parameters for validation study

3 EVALUATION OF DISPERSIVE SOLID PHASE EXTRACTION SORBENTS IN REMOVING MATRIX INTERFERENCES IN LITOPENAEUS VANNAMEI

3.1 Introduction
3.2 Materials and Methods
 3.2.1 Samples
 3.2.2 Chemicals and reagents
 3.2.3 Dispersive solid phase extraction
 3.2.4 Recovery study
 3.2.5 QuEChERS method
 3.2.6 Determination of fat content
 3.2.7 Gas chromatography mass spectrometry analysis
 3.2.8 Statistical analysis
3.3 Results and discussion
 3.3.1 Effect of fat content
 3.3.2 Effect of extraction solvent and gas chromatography injection mode
 3.3.3 Effect of dispersive solid phase extraction sorbents
 3.3.4 Recovery rate and significant test of sorbents
 3.3.5 Matrix interferences and sorbents efficiency
3.4 Conclusion

4 VALIDATION STUDY OF THE QuEChERS METHOD AND THE MODIFIED AOAC OFFICIAL METHOD 983.21 AND THEIR COMPARISON
4.1 Introduction
4.2 Materials and Methods
 4.2.1 Samples
 4.2.2 Chemicals and reagents
 4.2.3 QuEChERS method
 4.2.4 AOAC Official Method 983.21
 4.2.5 Gas chromatography analysis
 4.2.6 Gas chromatography mass spectrometry analysis
 4.2.7 Selectivity
4.2.8 Limit of detection and limit of quantification 102
4.2.9 Linearity and working range 103
4.2.10 General test for matrix effect 104
4.2.11 Trueness and recovery study 105
4.2.12 Precision 106
4.2.13 Statistical analysis 107
4.2.14 Application to real samples 107

4.3 Results and discussion 108
4.3.1 Selectivity 108
4.3.2 Limit of detection and limit of quantification 116
4.3.3 Linearity and working range 119
4.3.4 General test for matrix effect 121
4.3.5 Trueness and recovery study 137
4.3.6 Precision 141
4.3.7 Summary of method validation 144
4.3.8 Application to real samples 147

4.4 Conclusion 148

5 SUMMARY, GENERAL CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH 149

REFERENCES 152
APPENDICES 165
BIODATA OF STUDENT 168
LIST OF PUBLICATIONS 169