UNIVERSITI PUTRA MALAYSIA

POWDER PROPERTIES AND PREBIOTIC ACTIVITY OF WHITE DRAGON FRUIT (HYLOCEREUS UNDATUS) JUICE SPRAY-DRIED USING RESISTANT MALTODEXTRIN

NORZAIDA YUSOF

FSTM 2013 8
POWDER PROPERTIES AND PREBIOTIC ACTIVITY OF WHITE DRAGON FRUIT (*HYLOCEREUS UNDATUS*) JUICE SPRAY-DRIED USING RESISTANT MALTODEXTRIN

NORZAIDA YUSOF

MASTER OF SCIENCE
UNIVERSITI PUTRA MALAYSIA
2013
POWDER PROPERTIES AND PREBIOTIC ACTIVITY OF WHITE DRAGON FRUIT (*HYLOCEREUS UNDATUS*) JUICE SPRAY-DRIED USING RESISTANT MALTODEXTRIN

By

NORZAIDA YUSOF

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

Mei 2013
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
DEDICATION

This dissertation is dedicated especially to my beloved husband, Asmadi and parents, Hj Yusof and Hajah Wan Zabidah for their constant doa’, encouragement and support.

Norzaida Yusof
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirements for the degree of Master of Science

POWDER PROPERTIES AND PREBIOTIC ACTIVITY OF WHITE DRAGON FRUIT (*HYLOCEREUS UNDATUS*) JUICE SPRAY-DRIED USING RESISTANT MALTODEXTRIN

By

NORZAIDA YUSOF

May 2013

Chairperson : Sharifah Kharidah Syed Muhammad, PhD

Faculty : Food Science and Technology

Prebiotics which have been found effective in gastrointestinal normal flora proliferation and pathogen suppression occur naturally in fruits and vegetables including white dragon fruit (*Hylocereus undatus*). A study was, therefore conducted to produce white dragon fruit (WDF) powders through spray drying using resistant maltodextrin (RMD) and maltodextrin (MD) as wall materials. Resistant maltodextrin, which is a soluble fiber, was selected as a wall material to produce free-flowing WDF powder while MD was selected as the common wall material used in spray drying of fruit juice. Wall materials and drying conditions were assumed to influence powder properties and therefore, the objectives of this study were to investigate the effects of spray-drying conditions and two different wall materials, namely, MD and RMD, and to obtain optimum conditions for the production of the
WDF powders by evaluating the physicochemical properties of the produced powders. To produce powder with RMD (WRMD), the following spray drying conditions were evaluated: an inlet temperature from 140 °C to 160 °C, an outlet temperature from 75 °C to 85 °C, and 20% to 30% RMD concentration. To produce powder with MD (WMD), the following spray drying conditions were studied: an inlet temperature from 150 °C to 170 °C, an outlet temperature from 75 °C to 85 °C, and 15% to 30% MD concentration. The produced powders were then evaluated for process yield, moisture content, water activity, solubility, hygroscopicity and bulk density. Results of the study demonstrated that the process yield of WDF powders increased with increasing inlet temperature and decreasing RMD and MD concentrations. Their moisture content and water activity decreased with increasing outlet temperature and increasing RMD and MD concentrations. Their solubility increased with increasing inlet and outlet air temperatures and increasing RMD and MD concentrations. Hygroscopicity of the powders increased with increasing inlet and outlet temperatures for both powders and decreased with increasing MD concentration for WMD powder. Bulk density of the powders decreased with increasing inlet and outlet temperatures for WRMD powder, whereas it decreased with increasing inlet temperature and MD concentration for WMD powder. RMD had nearly no effect on hygroscopicity and bulk density of the WDF powder. The optimum conditions to obtain a free-flowing WDF powder were at an inlet temperature of 153°C, outlet temperature of 82°C and 20% of RMD concentration, whereas 150 °C of inlet temperature, 75 °C of outlet temperature and 18% of MD concentration were the optimum conditions for production of WMD powder. The WDF powders produced using both RMD and MD at optimum spray drying conditions were then analysed for their physical properties, morphologies and glass
transition temperatures, T_g. The results showed that RMD reduced the water activity and moisture content of the powder better than MD, while bulk density and true density of WRMD powder was higher than that of WMD powder. In addition, the particle size of WRMD powder was smaller than that of WMD powder and the morphology of the WRMD powder showed that it had a smooth surface compared to WMD powder where shrinkage and dent surfaces were observed. Although the T_g value of WMD powder was higher than that of WRMD powder, but their values were not significantly different ($p>0.05$). The potential of both powders as new prebiotic sources was then investigated whereby both powders were produced using the optimum spray drying conditions and then investigated for their ability to support the growth of *Bifidobacterium longum* BB536 and *Lactobacillus casei Shirota*. The growth of the 2 bacteria strains was determined every 6 h for 24 h with anaerobic incubation at 37 °C in six MRS media containing glucose, RMD, MD, WRMD, WMD and fructooligosaccharides (FOS) as substrates. The results indicated that all the substrates significantly ($p<0.05$) increased the growth of the probiotic bacteria; *B.longum* BB536 and *L.casei Shirota* and WRMD powder gave the highest bacterial count. Thus, the results indicated that WRMD has the potential as a new prebiotic source for the functional food industry.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk Ijazah Master Sains

CIRI FIZIKAL DAN AKTIVITI PREBIOTIK SERBUK BUAH NAGA PUTIH (HYLOCEREUS UNDATUS) YANG TERHASIL DARI SEMBURAN KERING MENGGUNAKAN MALTODEKSTRIN RINTANG

Oleh

NORZAIDA YUSOF

Mei 2013

Pengerusi : Sharifah Kharida Syed Muhammad
Fakulti : Sains dan Teknologi Makanan

Prebiotik yang terbukti berkesan sebagai penggalak pertumbuhan mikroflora di dalam usus serta melawan patogen boleh didapati secara semulajadi di dalam buah-buahan dan sayur-sayuran termasuk buah naga putih. Oleh itu, satu kajian telah dijalankan untuk menghasilkan serbuk naga putih menggunakan maltodekstrin rintang (RMD) dan maltodekstrin (MD) sebagai agen pengering melalui proses pengeringan-sembur. RMD merupakan serbuk yang mengandungi fiber terlarut telah dipilih sebagai salah satu agen pengering untuk menghasilkan serbuk naga putih dengan sifat yang tidak melekit, manakala MD pula dipilih sebagai agen pengering kerana MD selalu digunakan untuk menghasilkan serbuk buah menggunakan kaedah pengeringan-sembur. Agen pengering dan keadaan proses pengeringan dijangkakan memberi kesan kepada sifat serbuk yang terhasil. Oleh itu, objektif pertama kajian...
ini ialah untuk mengkaji kesan daripada proses pengeringan- sembur dengan menggunakan dua jenis agen pengering, RMD dan MD, bagi mendapatkan keadaan yang optimum untuk menghasilkan serbuk naga putih serta menilai sifat fizikal serbuk naga yang terhasil. Kajian ini telah dijalankan menggunakan kaedah response surface dengan respon pemboleh ubah bagi serbuk naga bersalut RMD (WRMD) ialah suhu udara masuk (140 °C-160 °C), kepekatan RMD (20%-30%) dan suhu udara keluar (75 °C-85 °C). Bagi serbuk naga bersalut MD (WMD), suhu udara masuk ialah (150 °C-170 °C), kepekatan MD (15%-30%) dan suhu udara keluar ialah (75 °C-85 °C). Serbuk naga putih yang dihasilkan kemudian dianalisis untuk hasil proses, kandungan air, aktiviti air, higroskopisiti dan ketumpatan pukal. Keputusan analisis menunjukkan jumlah serbuk naga putih yang terhasil meningkat apabila suhu udara masuk meningkat dan kepekatan RMD dan MD berkurang; penambahan kepekatan RMD dan MD serta suhu udara keluar secara signifikan (p<0.05) mengurangkan aktiviti dan kandungan air serbuk naga putih; kelarutan serbuk naga didalam air meningkat apabila semua respon pemboleh ubah meningkat. Higroskopisiti untuk kedua-dua serbuk meningkat apabila suhu udara keluar dan masuk meningkat tetapi menurun apabila kepekatan MD meningkat bagi serbuk WMD. Ketumpatan pukal bagi serbuk WRMD menurun apabila suhu udara masuk dan keluar menurun tetapi bagi serbuk WMD, ketumpatan pukal menurun apabila suhu udara masuk dan kepekatan MD meningkat. RMD hampir tidak memberi kesan kepada higroskopisiti dan ketumpatan pukal serbuk naga putih yang terhasil. Keadaan optimum untuk hasilkan serbuk naga putih yang tidak melekit telah dikenal pasti pada keadaan ketika suhu udara masuk 153 °C, suhu udara keluar 82 °C dan kepekatan RMD 20%. Manakala untuk penghasilan serbuk WMD pula pada keadaan ketika suhu udara masuk 150 °C, suhu udara keluar 75 °C dan kepekatan MD 18%.
Serbuk yang dihasilkan menggunakan kedua-dua agen pengering, RMD dan MD pada keadaan optimum kemudian dianalisis untuk ciri-ciri fizikal, morfologi dan perubahan suhu kaca, \(T_g \). Keputusan menunjukkan bahawa RMD mengurangkan aktiviti air dan kandungan air serbuk lebih baik daripada MD, sementara ketumpatan pukal serbuk WRMD lebih tinggi daripada serbuk MD. Selain itu, saiz zarah serbuk WRMD lebih kecil daripada WMD dan morfologi serbuk WRMD menunjukkan bahawa ia mempunyai satu permukaan yang licin berbanding serbuk WMD yang dilihat mempunyai permukaan yang kecut dan kemik. \(T_g \) bagi serbuk WMD mencatat nilai yang lebih tinggi tetapi kedua-dua serbuk secara signifikan (\(p>0.05 \)) tidak mempunyai perbezaan. Potensi untuk kedua-dua serbuk naga putih sebagai sumber prebiotik baru kemudian dikaji dengan mengkaji samaada kedua-dua serbuk naga putih yang dihasilkan pada keadaan optimum dapat menyokong pertumbuhan *Bifidobacterium longum* BB536, *Lactobacillus casei* Shirota. Pertumbuhan dua jenis bakteria tersebut telah dijalankan setiap 6 jam selama 24 jam secara inkubasi anaerobic pada suhu 37 \(^\circ \)C dalam 6 jenis MRS media yang mengandungi glukos, RMD, MD, serbuk WRMD, serbuk WMD serta fruktooligosakarida (FOS) bertindak sebagai substrat. Keputusan kajian menunjukkan bahawa semua substrat secara signifikan (\(p<0.05 \)) meningkatkan pertumbuhan probiotik bakteria; *L.casei Shirota* dan *B.longum* BB536 dan serbuk WRMD menunjukkan bilangan bakteria paling banyak. Oleh itu, ini menunjukkan bahawa serbuk WRMD mempunyai potensi sebagai sumber prebiotik yang baru dalam industri makanan berfungsi.
ACKNOWLEDGEMENTS

Firstly, I would like to express my sincere gratitude and deepest appreciation to my supervisor, Assoc. Prof Dr. Sharifah Kharidah Syed Muhammad for accepting me as her graduate student and for her careful attention, encouragement and guidance throughout the research. Her role is instrumental in my professional and personal development.

I would also like to thank my committee members Dr Noranizan and Dr. Patricia for serving me on my committee and providing invaluable suggestions. My sincere appreciation also goes to Assoc. Prof Dr. Shuhaimi Mustafa and En. Yamin for providing me with the materials and equipments needed during the prebiotic study.

I should admit that my research would have not been complete without technical help and suggestions from the all lab assistants. I thank them for everything especially for constructing the troubleshooting in spray dryer work.

Not forgetting my friends and family for their ideas, comments, patience and help during my study. Their presence will always be cherished. Acknowledgements are also due to the Bernas, Universiti Putra Malaysia, Universiti Sultan Zainal Abidin and Ministry of Higher Education for funding me to carry out the project.
I certify that a Thesis Examination Committee has met on 21 May 2013 to conduct the final examination of NORZAIDA YUSOF on her Master thesis entitled “POWDER PROPERTIES AND PREBIOTIC ACTIVITY OF WHITE DRAGON FRUIT (HYLOCEREUS UNDATUS) JUICE SPRAY-DRIED USING RESISTANT MALTODEXTRIN” in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [(P.U.A) 106] 15 March 1998. The Committee recommends that the candidate be awarded the Master degree.

Members of the Thesis Examination Committee were as follows:

Jamilah Binti Bakar, PhD
Professor
Faculty of Food Science and Technology
(Chairman)

Farah Saleena binti Taip, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

Nor ‘Aini Abdul Rahman, PhD
Associate Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Internal Examiner)

Mohammad Yusof Maskat, PhD
Associate Professor
National University of Malaysia
Malaysia
(External Examiner)

NORITAH OMAR, PHD
Assoc. Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia
Date: 2 August 2013
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Sharifah Kharidah Syed Muhammad, PhD
Associate Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Chairperson)

Noranizan Mohd Adzahan, PhD
Associate Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Member)

Patricia Matanjun
Senior Lecturer
School of Food Science and Nutrition
Universiti Malaysia Sabah
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any degree at Universiti Putra Malaysia or at any other institution.

NORZAIDA YUSOF

Date: 21 May 2013
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td></td>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td></td>
<td>ACKNOWLEDGEMENTS</td>
<td>ix</td>
</tr>
<tr>
<td></td>
<td>APPROVAL</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>DECLARATION</td>
<td>xii</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>xvi</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>xviii</td>
</tr>
<tr>
<td></td>
<td>LIST OF ABBREVIATIONS</td>
<td>xx</td>
</tr>
</tbody>
</table>

CHAPTER

1 **INTRODUCTION**

2 **LITERATURE REVIEW**

2.1 Dragon Fruit

2.2 Nutritional Values of Dragon Fruits

2.3 Fruit Drying Technology

2.4 Spray Drying

2.4.1 Spray Drying Process

2.4.2 Spray Drying of Fruit Juice

2.4.3 Spray Drying Variables and Drying Aids

2.4.4 Drying Aids

2.4.5 Resistant Maltodextrin

2.4.6 Physical Properties of Spray Dried Powders

2.5 Prebiotics

2.5.1 Oligosaccharides as Prebiotics

2.6 Probiotics

2.6.1 Lactic Acid Bacteria

2.7 Health Benefits of Probiotic and Prebiotic

3 **EFFECT OF SPRAY DRYING CONDITIONS AND DIFFERENT WALL MATERIALS ON PRODUCTION OF WHITE DRAGON FRUIT POWDER**

3.1 Introduction

3.2 Materials and Methods

3.2.1 Materials

3.2.2 Preparation of Dragon Fruit Juice

3.2.3 Sample Preparation for Spray Drying

3.2.4 Spray Drying of Dragon Fruit Juice

3.2.5 Experimental Design

3.2.6 Powder analysis

3.2.7 Statistical Analysis

3.2.8 Optimization of Spray Drying Conditions and Validation Procedures

3.3 Results and Discussion

XIII
3.3.1 Response Surface Analysis 48
3.3.2 Process Yield 51
3.3.3 Moisture Content and Water Activity 53
3.3.4 Solubility 54
3.3.5 Hygroscopicity 57
3.3.6 Bulk Density 61
3.3.7 Optimization Procedure for Predicting an Optimum Spray-Dried White Dragon Fruit Powder 62
3.3.8 Validation of the Models 64

3.4 Conclusions 68

4 PHYSICAL PROPERTIES OF WHITE DRAGON FRUIT POWDERS PRODUCED WITH DIFFERENT WALL MATERIALS 70
4.1 Introduction 70
4.2 Materials and Methods 71
4.2.1 Materials 71
4.2.2 Preparation of Dragon Fruit Juice 72
4.2.3 Sample Preparation for Spray Drying 72
4.2.4 Powder Production 72
4.2.5 Physical Characterization of White Dragon Fruit Powders 72
4.2.6 Determination of Particle Size Distribution 73
4.2.7 Scanning Electron Microscopy (SEM) 74
4.2.8 Determination of Glass Transition Temperature, Tg 74
4.2.9 Statistical Analysis 75
4.3 Results and Discussion 75
4.3.1 Physical Properties of White Dragon Fruit Powders 75
4.3.2 Particles Size Distribution of White Dragon Fruit Powder 78
4.3.3 Morphology of White Dragon Fruit Powders 80
4.3.4 Glass Transition Temperature, Tg 82
4.4 Conclusions 84

5 PREBIOTIC ACTIVITY OF WHITE DRAGON FRUIT POWDERS PRODUCED USING DIFFERENT WALL MATERIALS 85
5.1 Introduction 85
5.2 Materials and Methods 87
5.2.1 Materials 87
5.2.2 Bacterial Strains 87
5.2.3 White Dragon Fruit Powder Production by Spray Drying 88
5.2.4 Modified de Man Rogosa Sharpe (MRS) Media Preparation 88
5.2.5 Bacterial Stock Preparation 89
5.2.6 Gram Staining 90
5.2.7 Bacterial Counting 91
5.2.8 Sample Media and Culture Conditions 92
5.2.9 Statistical Analysis 93
5.3 Results and Discussion 94
5.3.1 Morphological Observation 94
5.3.2 Fermentation of Substrates by *L.* *casei* *Shirota* and *B.* *longum* BB536 in Pure Culture 95
5.4 Conclusions 101

6 SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 102
FOR FUTURE RESEARCH

REFERENCES 105
BIODATA OF STUDENT 120