PREVALENCE, RISK AND ANTIBIOGRAM OF *Listeria monocytogenes* IN RAW CHICKEN MEAT

By

GOH SUR GUAT

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

October 2013
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
Dedicated to my beloved parents, siblings and friends for their eternity love and endless support
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

PREVALENCE, RISK AND ANTIBIOGRAM OF *Listeria monocytogenes* IN RAW CHICKEN MEAT

By

GOH SUR GUAT

October 2013

Chairman: Professor Son Radu, PhD

Faculty: Food Science and Technology

Chicken is a popular food in Malaysia. Consumption of poultry products has been increasing in the past decades. However, the contamination levels of *Listeria monocytogenes* (*L. monocytogenes*) in retailed chicken meat remain uncertain. This research was conducted to study the prevalence and antibiotic resistance of *L. monocytogenes* in raw chicken meat and effects of clove extracts against *L. monocytogenes* isolates. This study also aimed to determine transmission of *L. monocytogenes* from raw to cooked chicken meat via cutting boards as well as the risk of acquiring listeriosis through consumption of raw chicken meat.

A total of 210 samples were purchased from three hypermarkets and three wet markets in Selangor from September 2011 to January 2012. Most Probable Number (MPN) method had been used together with Polymerase Chain Reaction (PCR) and conventional plating for detection of *L. monocytogenes*.
monocytogenes in raw chicken meat. Prevalence of L. monocytogenes in raw chicken meat was found to be 20%, in which the prevalence of L. monocytogenes in samples purchased from hypermarkets (25.71%) was higher than those of wet markets (14.29%). L. monocytogenes was detected in chicken breasts, drumsticks and thigh at prevalences of 42.03%, 11.27% and 7.14% respectively. MPN-PCR showed higher sensitivity compared to MPN-plating. By using MPN-PCR, the prevalence of L. monocytogenes in chicken meat was 20%, while MPN-plating could only detect 9.52%. The density of L. monocytogenes found in the samples ranged from <3.0 to 16 MPNg⁻¹.

Twenty-three isolates of L. monocytogenes were recovered from raw chicken meat. All isolates showed resistance to at least one antibiotic tested. Eleven isolates (47.83%) were resistant to at least 8 antibiotics. The isolates showed highest resistance against chloramphenicol (69.57%) followed by tetracycline (60.87%). Resistance of L. monocytogenes isolates towards antibiotic demonstrates the importance of identifying novel antimicrobial agent to inactivate L. monocytogenes in food before consumption. Thus, clove extracts was used to inhibit the L. monocytogenes isolates. Clove extracts showed inhibitory effect on L. monocytogenes isolates. MIC (Minimal inhibitory concentration) and MBC (Minimal bactericidal concentration) of clove extracts ranged from 156.25 ± 0.00 to 1041.67 ± 360.84 and 520.83 ± 180.42 to 4166.67 ± 1443.38 µg/ml, respectively.
A simulation study was conducted to determine the transmission of *L. monocytogenes* from raw to cooked chicken meat via polyethylene and wooden cutting boards. *L. monocytogenes* was found to contaminate cooked chicken meat regardless of the temperature of the chicken meat (room temperature or boiling temperature) and the material of the cutting boards when it is used within 30 min of contamination.

Stepwise risk assessment was used to determine the risk of acquiring listeriosis by consumption of raw chicken meat. An estimate of worst case scenario showed that the risk of acquiring listeriosis for healthy population was 0.008 per 100,000 populations annually. The risk estimates were higher for AIDS patients (6.670 per 100,000), Diabetes Mellitus Type II patients (0.190 per 100,000) and elderly (0.060 per 100,000).

Presence of *L. monocytogenes* in raw chicken meat is unavoidable, thus, consumers should be aware of the significance of *L. monocytogenes* to human health and the ways to prevent its contamination.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

PREVALENS, RISIKO DAN ANTIBIOGRAM *Listeria monocytogenes* PADA AYAM MENTAH

Oleh

GOH SUR GUAT

Oktober 2013

Chairman: Professor Son Radu, PhD

Fakulti: Sains dan Teknologi Makanan

Sejumlah 210 sampel dibeli dari tiga pasaraya dan tiga pasar di kawasan Selangor dari September 2011 sehingga Januari 2012. Kaedah Jumlah Paling Mungkin (MPN) telah digunakan bersama dengan Tindak Balas Berantai Polimerasi (PCR) dan piring untuk mengesan *L. monocytogenes* dalam daging
ayam mentah. Kekerapan kehadiran *L. monocytogenes* dalam daging ayam ialah 20%, di mana kekerapan *L. monocytogenes* dalam daging ayam dibeli dari pasaraya adalah lebih tinggi (25.71%) daripada yang dibeli dari pasar basah (14.29%). *L. monocytogenes* dikesan pada dada ayam, betis ayam dan paha ayam masing-masing pada kekerapan 42.03%, 11.27% dan 7.14%. MPN-PCR menunjukkan kesensitifan yang lebih tinggi berbanding dengan piring MPN. Dengan menggunakan kaedah MPN-PCR, kekerapan *L. monocytogenes* dalam daging ayam adalah 20%, manakala hanya 9.52% dikesan sekiranya piring MPN digunakan. Kepadatan *L. monocytogenes* yang dikesan dalam daging ayam berada pada julat <3.0 hingga 16 MPNg\(^{-1}\).

Dua puluh tiga pencilan *L. monocytogenes* telah dipencilkan daripada daging ayam mentah. Semua pencilan tersebut menunjukkan kerintangan terhadap sekurang-kurangnya sejenis antibiotik yang diuji. Sebelas (47.83%) pencilan menunjukkan kerintangan terhadap lapan antibiotik yang diuji. Pencilan-pencilan ini menunjukkan tahap kerintangan tertinggi terhadap kloramfenicol (69.57%), diikuti dengan tetrasiklin (60.87%). Rintangan pencilan-pencilan *L. monocytogenes* terhadap antibiotik menunjukkan kepentingan untuk menyelidik agen antimikrob baru untuk menyahaktif *L. monocytogenes* dalam makanan sebelum pengambilan. Oleh itu, kesan rintangan ekstrak cengkhi terhadap pencilan-pencilan *L. monocytogenes* telah dikaji. Ekstrak cengkhi telah menunjukkan kesan rintangan kepada pencilan-pencilan *L. monocytogenes*. Kepekatan merencat minimum (MIC) dan
kepekatan bakteriasid minimum (MBC) ekstrak cengkih berada dalam julat 156.25 ± 0.00 ke 1041.67 ± 360.84 dan 520.83 ± 180.42 ke 4166.67 ± 1443.38 µg/ml, masing-masing.

Satu kajian simulasi telah dijalankan untuk menilai pemindahan *L. monocytogenes* dari daging ayam mentah ke daging ayam masak melalui papan pemotong polietilena dan kayu. Didapati *L. monocytogenes* boleh mengkontaminasi daging ayam masak tanpa mengira suhu (suhu bilik atau suhu mendidih) dan jenis bahan papan pemotong yang digunakan dalam tempoh 30 min selepas ia dikontaminasi.

Penilaian risiko berperingkat (stepwise risk assessment) telah digunakan untuk menentukan risiko dijangkiti wabak listeriosis dengan pengambilan daging ayam. Taksiran bagi senario paling buruk menunjukkan risiko dijangkiti wabak listeriosis untuk populasi yang sihat adalah 0.008 per 100,000 populasi setiap tahun. Anggaran risiko adalah lebih tinggi bagi pesakit AIDS (6.670 per 100,000), Diabetes Melitus jenis II (0.190 per 100,000) dan golongan tua (0.060 per 100,000).

Kehadiran *L. monocytogenes* dalam daging ayam mentah tidak dapat dielakkan, oleh itu, pengguna harus menyedari kepentingan *L. monocytogenes* terhadap kesihatan manusia dan cara-cara untuk mengelakkan kontaminasinya.
ACKNOWLEDGEMENTS

I would like to thank my supervisor, Prof. Dr. Son Radu, the chairman of my supervisory committee for his assistance in completing my research and thesis. His expertise in multiple fields was a great asset in designing the experiments and analyzing the results. He provided me with knowledge, as well as encouragement throughout the duration of this project.

My deepest appreciation also goes to my co-supervisors, Dr. John Tang Yew Huat (Faculty of Food Technology, Universiti Sultan Zainal Abidin) and Assoc. Prof. Dr. Yaya Rukayadi (Faculty of Food Science and Technology, Universiti Putra Malaysia). Thank you very much for the guidance.

I am grateful to all my friends and laboratory mates that I have met in the Faculty of Food Science and Technology. Big thanks are owed to Tan Tai Boon and Cheah Yee Jing for proofreading my writing. I also like to thank all my dearest labmates (Kuan Chee Hao, Loo Yuet Ying, Soopna Puspanadan, Najwa, Chang Wei San, Lye Ying Ling, Ubong, Nina and Alex) for assisting me in my experiments and helping me in analyzing the results. I will always remember the sweet memories and the time working with all of you.

Last and definitely not least, I extend my sincere thanks and love to my outstanding supportive parents, for their love and encouragement. They taught me the value of education as well as hard work. I also thank my
sisters and brothers for their love and encouragement. Finally, I would like to express my gratitude to Lee Kai Sheng, I would never have completed this endeavor without his support.
APPROVAL

I certify that a Thesis Examination Committee has met on 23 October 2013 to conduct the final examination of GOH SUR GUAT on her thesis entitled “Prevalence, Risk and Antibiogram of *Listeria monocytogenes* in Raw Chicken Meat” in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the degree of Master of Science.

Members of the Thesis Examination Committee were as follows:

Abdulkarim Sabo Mohammed, PhD
Associate Professor
Faculty Food Science and Technology
Universiti Putra Malaysia
(Chairman)

Zunita binti Zakaria, PhD
Associate Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Internal Examiner)

Vasantha Kumari Neela, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Internal Examiner)

Aminah Abdullah, PhD
Professor
Faculty of Sciences and Technology
Universiti Kebangsaan Malaysia
(External Examiner)

NORITAH OMAR, PhD
Associate Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 19 December 2013
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Son Radu, PhD
Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Chairman)

Yaya Rukayadi, PhD
Associate Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Member)

John Tang Yew Huat, PhD
Senior Lecturer
Faculty of Food Technology
Universiti Sultan Zainal Abidin
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is nor concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

GOH SUR GUAT

Date: 23 October 2013
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>ix</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>xi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xviii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xix</td>
</tr>
</tbody>
</table>

CHAPTER

1 GENERAL INTRODUCTION
 1.1 Introduction 1
 1.2 Objectives 5

2 LITERATURE REVIEW
 2.1 *Listeria monocytogenes* 6
 2.1.1 Taxonomy 8
 2.1.2 Foodborne listeriosis 9
 2.1.3 Treatment of listeriosis 12
 2.2 *L. monocytogenes* in food 13
 2.2.1 *L. monocytogenes* in meat 14
 2.2.2 *L. monocytogenes* in vegetables 15
 2.2.3 *L. monocytogenes* in dairy product 15
 2.2.4 *L. monocytogenes* in food processing environment 16
 2.3 Detection of *L. monocytogenes* 17
 2.3.1 Culture dependent methods 17
 2.3.2 Rapid method 19
 2.3.3 Most probable number 22
 2.3.4 Combined MPN-PCR method 24
 2.4 Chicken meat 25
 2.5 Cross contamination 27
 2.5.1 Reservoirs of *L. monocytogenes* 27
 2.6 Antibiotic 28
 2.6.1 Antibiotic classes 28
 2.6.2 Antibiotic resistance 32
 2.6.3 Clove 34
 2.7 Food safety 35

3 PREVALENCE AND QUANTIFICATION OF *LISTERIA MONOCYTOGENES* IN CHICKEN MEAT
 3.1 Introduction 38
3.2 Materials and methods
3.2.1 Sample collection
3.2.2 Sample preparation and pre-enrichment
3.2.3 Most probable number (MPN) method
3.2.4 Plating method
3.2.5 Genomic DNA preparation
3.2.6 PCR assay
3.2.7 *L. monocytogenes* isolation on selective media
3.2.8 Statistical analysis
3.3 Results
3.4 Discussion
3.5 Conclusion

4 ANTIBIOTIC SUSCEPTIBILITY AND EFFECTS OF CLOVE EXTRACT AGAINST *LISTERIA MONOCYTOGENES* ISOLATES
4.1 Introduction
4.2 Materials and methods
4.2.1 Antimicrobial susceptibility testing
4.2.2 Antibacterial activity of clove extract
4.3 Results
4.4 Discussion
4.5 Conclusion

5 TRANSMISSION OF *LISTERIA MONOCYTOGENES* FROM RAW CHICKEN MEAT TO COOKED CHICKEN MEAT VIA CUTTING BOARDS
5.1 Introduction
5.2 Materials and methods
5.2.1 Preparation of *L. monocytogenes* inoculum
5.2.2 Cutting boards
5.2.3 Chicken samples
5.2.4 Cross-contamination experiments
5.2.5 Enumeration of *L. monocytogenes*
5.2.6 Recovery of *L. monocytogenes*
5.2.7 Data analysis
5.3 Results
5.4 Discussion
5.5 Conclusion

6 PRELIMINARY STEPWISE RISK ASSESSMENT OF RETAILED RAW CHICKEN MEAT
6.1 Introduction
6.2 Materials and methods
6.2.1 Exposure assessment
6.3 Results
6.4 Discussion
6.5 Conclusion
GENERAL DISCUSSION AND CONCLUSION

REFERENCES
APPENDIX A
APPENDIX B
BIODATA OF STUDENT
LIST OF PUBLICATIONS