UNIVERSITI PUTRA MALAYSIA

IN VITRO ANTIPROLIFERATIVE ACTIVITY OF HT-29 AND HL-60 CELLS AND PROLIFERATIVE ACTIVITY OF MSC TREATED WITH CHANNA STRIATUS BLOCH CRUDE EXTRACTS

NUR SYAMSYIAH BINTI MOHD JAMIL

FPSK(m) 2012 33
IN VITRO ANTIPROLIFERATIVE ACTIVITY OF HT-29 AND HL-60 CELLS AND PROLIFERATIVE ACTIVITY OF MSC TREATED WITH CHANNA STRIATUS BLOCH CRUDE EXTRACTS

NUR SYAMSYIAH BINTI MOHD JAMIL

MASTER OF SCIENCE
UNIVERSITI PUTRA MALAYSIA

2012
IN VITRO ANTIPROLIFERATIVE ACTIVITY OF HT-29 AND HL-60 CELLS, AND PROLIFERATIVE ACTIVITY OF MESENCHYMAL STEM CELLS TREATED WITH CHANNA STRIATUS BLOCH CRUDE EXTRACTS

By

NUR SYAMSYIAH BINTI MOHD JAMIL

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Master of Science

October 2012
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Master of Science

**IN VITRO ANTIPROLIFERATIVE ACTIVITY OF HT-29 AND HL-60 CELLS, AND PROLIFERATIVE ACTIVITY OF MESENCHYMAL STEM CELLS TREATED WITH CHANNA STRIATUS BLOCH CRUDE EXTRACTS**

By

NUR SYAMSYIAH BINTI MOHD JAMIL

October 2012

Chair: Professor Abdul Manan Bin Mat Jais, PhD

Faculty: Faculty of Medicine and Health Sciences

*Channa striatus* (Haruan) has been traditionally used for wound healing especially for post-natal women and after surgery. It is scientifically proven to possess analgesic properties. Until today, the effectiveness of anticancer drugs is limited due to its toxicity to cancer cells as well as normal cells and bone marrow. The present study was carried out to determine the haruan crude extracts (Haruan traditional extract liquid phase [HTEₐ] and solid phase [HTEₘ], haruan chloroform extract [HCE] and haruan methanol extract [HME]) *in vitro* cytotoxic activity on promyelocytic leukemia (HL-60) cells and colorectal adenocarcinoma (HT-29) cells and proliferative activity on mesenchymal stem (MSC) cells. The extracts were found to induce anti-proliferative effect on HL-60 and HT-29 cells and proliferative effect on MSC cells after tested using MT assay. HTEₘ most effective to inhibit cell growth of HL-60 cells at 50% of cell population (IC₅₀) values were 44.0 ± 0.37 µg/ml, 38.0 ± 0.52 µg/ml and 5.0 ± 0.83 µg/ml respectively, after treated for 24, 48
and 72 hours. HCE and HME also able to inhibit the growth of HL-60 cells which the IC\textsubscript{50} values ranged from 78.0 ± 0.25 µg/ml at 48 hours up to 18.0 ± 0.32 µg/ml at 72 hours. However, only HME shows inhibition effect effectively against HT-29 which IC\textsubscript{50} value was 78.0 ± 0.28 µg/ml at 72 hours. For comparative purposes, the IC\textsubscript{50} values of several commercial anticancer drugs against HL-60 and HT-29 cells were tested. Doxorubicin was more significant to inhibit HL-60 cells with the IC\textsubscript{50} was <5.0 ± 0.2 µg/ml at 24 hours of incubation period, while the 5-fluorouracil treated on HT-29 cells showed the IC\textsubscript{50} values at 84.0 ± 0.19 µg/ml and 5.0 ± 0.71 µg/ml respectively, after 48 and 72 hours of incubation period. Interestingly, all extracts were found to induce proliferation of the MSC cells. HTE\textsubscript{A} shows the greatest value of cell proliferation which ranged from 115.4% ± 0.07 up to 148.0% ± 0.07 at 100 µg/ml. Furthermore, observation on morphological alterations indicating apoptosis was evaluated by using phase contrast and fluorescent microscopes. Analyses of AO/PI staining, DNA content and cell cycle have confirmed that the haruan crude extracts have ability in promoting apoptosis. However, the event is time-dependent. At the IC\textsubscript{50} value, HTE\textsubscript{S}, HCE and HME were able to induce apoptosis in HL-60 cells, and it also induced necrosis in HT-29 cells. Based on the results obtained, HTE\textsubscript{S}, HCE and HME were found promoted better inhibitory effect compared to HTE\textsubscript{A}. As a result, this study demonstrated the antiproliferative activity of haruan crude HTE\textsubscript{A}, HTE\textsubscript{S}, HCE and HME extracts against the HL-60 and HT-29 cell lines, as well as its ability to induce proliferation of MSC cells, which is in line with traditional claims that haruan promotes tissue growth.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

RAWATAN EKSTRAK MENTAH BLOCH CHANNA STRIATUS TERHADAP AKTIVITI ANTI-PEMBIAKKAN SEL HT-29 DAN HL-60 DAN AKTIVITI PEMBIAKKAN SEL STEM MESENKIMAL SECARA IN VITRO

Oleh

NUR SYAMSYIAH BINTI MOHD JAMIL

Oktober 2012

Pengerusi: Profesor Abdul Manan Bin Mat Jais, PhD
Fakulti: fakulti Perubatan dan Sains Kesihatan

Channa striatus (Haruan) digunakan secara tradisional untuk merawat luka khususnya untuk wanita selepas melahirkan dan selepas pembedahan. Ia terbukti secara saintifik memiliki kesan analgesik. Sehingga hari ini, keberkesanan ubat antikanser adalah terhad berdasarkan sifat toksiknya terhadap sel kanser serta sel normal dan tulang sum-sum. Kajian ini dilaksanakan untuk menentukan kesan ekstrak mentah haruan (Ekstrak tradisional haruan; fasa cecair [HTE\textsubscript{A}] and fasa pepejal [HTE\textsubscript{S}], ekstrak kloroform haruan [HCE] dan ekstrak metanol haruan [HME]) secara in vitro terhadap aktiviti sitotoksik ke atas sel sel leukemial promyelositik (HL-60) dan sel usus adenokarsinoma (HT-29) dan aktiviti pembiakkan ke atas sel stem mesenkimal (MSC). Ekstrak tersebut menunjukkan kesan penggalak anti-pembiakkan ke atas sel HL-60 dan HT-29 dan kesan pembiakkan ke atas sel MSC selepas diuji menggunakan asai MTT. HTE\textsubscript{S} paling berkesan merencat pertumbuhan sel bagi sel HL-60 pada 50% dari sel populasi
(IC\textsubscript{50}) pada nilai 44.0 ± 0.37 µg/ml, 38.0 ± 0.52 µg/ml dan 5.0 ± 0.83 µg/ml masing-masing, selepas dirawat selama 24, 48 dan 72 jam. HCE dan HME juga mampu merencat pertumbuhan sel HL-60 di mana nilai IC\textsubscript{50} berbeza dari 78.0 ± 0.25 µg/ml pada 48 hours sehingga 18.0 ± 0.32 µg/ml pada 72 jam. Walau bagaimanapun, hanya HME menunjukkan kesan perencatan paling berkesan terhadap HT-29 di mana nilai IC\textsubscript{50} ialah 78.0 ± 0.28 µg/ml pada 72 jam. Bagi tujuan perbandingan, nilai IC\textsubscript{50} dari beberapa ubat antikanser komersial terhadap sel HL-60 and HT-29 diuji. Doxorubicin lebih signifikan merencat sel HL-60 dengan nilai IC\textsubscript{50} ialah <5.0 ± 0.2 µg/ml pada 24 jam tempoh inkubasi, sementara rawatan 5-fluorouracil ke atas sel HT-29 menunjukkan nilai IC\textsubscript{50} pada 84.0 ± 0.19 µg/ml dan 5.0 ± 0.71 µg/ml masing-masing, pada 48 dan 72 jam tempoh inkubasi. Menariknya, semua ekstrak didapati merangsang pembiakkan MSC. HTE\textsubscript{A} menunjukkan nilai pembiakan sel paling ketara di antara 115.4% ± 0.07 sehingga 148.0% ± 0.07 pada 100 µg/ml. Selain itu, pemerhatian ke atas perubahan morfologi yang menunjukkan apoptosis dinilai menggunakan mikroskop fasa perbezaan dan fluorescent. Analisis pewarnaan AO/PI, kandungan DNA dan kitaran sel telah menunjukkan ekstrak mentah haruan mempunyai kebolehupayaan untuk menggalakkan apoptosis. Walaupun demikian, kesan apoptosis ini adalah bergantung pada masa rawatan. Pada nilai IC\textsubscript{50}, HTE\textsubscript{S}, HCE dan HME merangsang apoptosis pada sel HL-60, dan ia juga merangsang necrosis pada sel HT-29. Berdasarkan keputusan yang diperolehi, HTE\textsubscript{S}, HCE dan HME didapati merangsang kesan perencatan yang lebih baik berbanding HTE\textsubscript{A}. Kesimpulannya, kajian ini menunjukkan aktiviti anti-pembiakkan ekstrak mentah haruan (HTE\textsubscript{A}, HTE\textsubscript{S}, HCE dan HME) terhadap sel HL-60 dan HT-29, serta kebolehupayaannya untuk merangsang pembiakkan sel MSC, sejajar dengan dakwaan tradisional iaitu haruan merangsang pertumbuhan tisu.
ACKNOWLEDGEMENT

First of all, I wish to thank and praise Allah S.W.T for His blessings and for enabling me to complete my research. I would like to express my gratitude to my supervisor, Professor Dr. Abdul Manan Mat Jais for his valuable guidance, support and encouragement throughout the whole process of completing this project.

I would like to extent my gratefulness to my co-supervisors; Dr. Abdah Md. Akim, Associate Professor Dr. Noorjahan Banu Mohammed Alitheen and Professor S. Fadilah Abdul Wahid for their support, guidance, contribution of ideas and expertise, and valuable discussion in making this research success.

My thanks go to Miss Norhaszalina Md. Zain, Dr. Yap Swee Keong and Mr. Wong Chee Yin for their generosity to help and allow me to use the equipments in their laboratory. A special thanks also to all my friends in UPM especially those in Haruan Research Group for their willingness to share knowledge with me.

Furthermore, I would like to take this opportunity to express my deepest appreciation to my husband, Khairul Rizal Esa, my son, Elman Hakimi Khairul Rizal and my family members for supporting me throughout the period of completing this project. Finally, I admit that it has been great and worthy experience for me to complete this task.
I certify that a Thesis Examination Committee has met on 5th October 2012 to conduct the final examination of Nur Syamsyiah Binti Mohd Jamil on her thesis entitled “In Vitro Antiproliferative Activity of HT-29 and HL-60 Cells, and Proliferative Activity of Mesenchymal Stem Cells Treated With Channa Striatus Bloch Crude Extracts” in accordance with the Universities and University Colleges Act 1971 and the Constitution on the Universiti Putra Malaysia [P.U. (A) 106] 15 March 1998. The committee recommends that the student be awarded the degree of Master of Science.

Members of the Examination Committee were as follows:

**Sabrina Sukardi, PhD**  
Associate Professor  
Faculty of Medicine and Health Sciences  
Universiti Putra Malaysia  
(Chairman)

**Patimah Ismail, PhD**  
Professor  
Faculty of Medicine and Health Sciences  
Universiti Putra Malaysia  
(Internal Examiner)

**Mohamad Taufik Hidayat Baharuldin, PhD**  
Senior Lecturer  
Faculty of Medicine and Health Sciences  
Universiti Putra Malaysia  
(Internal Examiner)

**Mohd Cairul Iqbal Mohd Amin, PhD**  
Associate Professor  
Faculty of Pharmacy  
Universiti Kebangsaan Malaysia  
(External Examiner)

**SEOW HENG FONG, PhD**  
Professor and Deputy Dean  
School of Graduate Studies  
Universiti Putra Malaysia

Date:
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of Supervisory Committee were as follows:

**Abdul Manan Mat Jais, PhD**
Professor  
Faculty of Medicine and Health Sciences  
Universiti Putra Malaysia  
(Chairman)

**Abdah Md. Akim, PhD**
Senior Lecturer  
Faculty of Medicine and Health Sciences  
Universiti Putra Malaysia  
(Member)

**Noorjahan Banu Mohammed Alitheen, PhD**
Associate Professor  
Faculty of Biotechnology  
Universiti Putra Malaysia  
(Member)

**S. Fadilah Abdul Wahid, PhD**
Professor  
Department of Medicine,  
Pusat Perubatan Universiti Kebangsaan Malaysia  
(Member)

---

**BUJANG BIN KIM HUAT, PhD**
Professor and Dean  
School of Graduate Studies  
Universiti Putra Malaysia

Date:
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declared that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or any other institution.

NUR SYAMSYIAH MOHD JAMIL

Date:
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iv</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>vi</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xv</td>
</tr>
</tbody>
</table>

CHAPTER

1  INTRODUCTION 1

2  LITERATURE REVIEW

2.1 Cancer
   2.1.1 Classification of Cancer 6
   2.2 Cancer Burden 7

2.3 Cancer Cells in Studies
   2.3.1 Colorectal cancer 8
   2.3.2 Leukemia 9

2.4 Normal Cells in Studies
   2.4.1 Mesenchymal Stem Cell 10

2.5 Terminology of Cell Death
   2.5.1 Cell Death 11
   2.5.2 Apoptosis 12
   2.5.3 Necrosis 13
   2.5.4 Cell Cycle 16

2.6 Anticancer Drugs
   2.6.1 Mitoxantrone 19
   2.6.2 Doxorubicin 20
   2.6.3 5-Fluorouracil 21

2.7 Natural Products 22
   2.7.1 Marine Natural Products as Anticancer Drugs 23

2.8 *Channa striatus* 25
3 MATERIALS AND METHODS

3.1 Preparation of Haruan Fillet Extracts
  3.1.1 Preparation of Fresh Haruan Fillet 28
  3.1.2 Preparation of Freeze-dried Haruan Fillet 28
  3.1.3 Preparation of Haruan Traditional Extracts (HTE) 29
  3.1.4 Preparation of Haruan Chloroform and Methanol Extracts 29

3.2 Cells 30

3.3 Cells and Culture Conditions 30
  3.3.1 Trypsinization 31

3.4 Preparation of Human Mononuclear Cells 31

3.5 Microtitration Cytotoxic Assay 32
  3.5.1 MTT [3-4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide] Assay 34

3.6 Morphological Assessment
  3.6.1 Phase Contrast Microscopy 34
  3.6.2 Fluorescent Microscopy 35

3.7 Quantification of Apoptosis by Flow Cytometry
  3.7.1 Flow Cytometry Analysis using PI/RNAse 35
  3.7.2 Flow Cytometry Analysis using APO-BrDU 36
  3.7.3 Flow Cytometry Analysis using Annexin V-FITC 37

3.8 Statistical Analyses 37

4 RESULTS AND DISCUSSION

4.1 MTT Assay 38

4.2 Morphological Assessment Study 51
  4.2.1 Phase Contrast Microscopy Study 51
  4.2.2 Fluorescent Microscopy Study (Acridine Orange/Propidium Iodide Staining) 57

4.3 Flow Cytometry Analysis 65
  4.3.1 Flow Cytometry Analysis using PI/RNAse 65
  4.3.2 Flow Cytometry Analysis using APO-BrDU 79
  4.3.3 Flow Cytometry Analysis using Annexin V-FITC 86

5 CONCLUSION 94

REFERENCES 97

BIODATA OF STUDENT 103